Equity and inequality

Measures of inequality (1)
Social inequality in health (2)
Poverty analysis (3)

Examples

-! Kotthatara Panchayat (rural municipality), Kerala, India
-! Health survey
\bullet ! Community based monitoring system
-!Poverty, health, social indicators
-!Needs of disadvantaged groups (Tribes, Paniyas, women)
-!Development policies
\bullet ! Community Based Health Insurance
-! Burkina Faso (various studies)
-! Community interventions to improve access to primary health care services
$\bullet!$ Health, health consumption, cost of ill-health

2
U UdeM / S. Haddad, 2012

Kottathara Panchayat, Kerala:

Age-specific prevalence of a health problem, by sex

Percentages of women reporting bad health, according to land possession, by age

Mohindra et Haddad, 2008
© UdeM / S. Haddad, 2012

Heterogeneity of indigenous populations: morbidity across social groups (standardized by age and sex)

Morbidity across tribal and non-tribal groups (standardized by age and sex; error bars 95\% CI)

6
© UdeM / S. Haddad, 2012

Morbidity prevalence by age and social group: Trans-generational transmission of health disadvantages

Graphical analysis: density curves

- ! Needs
-! Consumption
\bullet ! Wellbeing

© UdeM / S. Haddad, 2012

Lorenz curves

Kotthatara Panchayat: social inequalities (2003)

Graphical analysis: Lorenz curve

-! Difference between current distribution and perfect equality
-! L(p):
-! Y: cumulative percentage of the outcome variable (percentiles)
-! X: cumulative percentage of the population ranked by outcome level (lowest to highest)
\bullet ! Diagonal: line of perfect equality
$\bullet!$ Position of $\mathrm{L}(\mathrm{p})$: below the diagonal
© UdeM / S. Haddad, 2012

Measures of inequality

- Ideally:
-! Reflect the overall level of inequality
-! Robust
- Standardised (no metrics)
- Decomposable
\bullet !Population subgroups
-! Economics
! Anonymity
! Scale independence
! Population independence
-! Transferability

Measures of inequality

! Variance
-! Same unit as the outcome + decomposable
-! Coefficient of variation
-! Normalised measure of dispersion
-! Interquantile range, difference or ratio
-! Gini index
-! normalised, not decomposable
-! Atkinson inequality index
$\bullet!$ sensitivity parameter (ε) for differents weighs given to inequalities at the bottom of the income distribution
\bullet ! Thiel index
\bullet ! Sensitivity parameter (a) + decomposable
© UdeM / S. Haddad, 2012

Blinder-Oaxaca Decomposition of inequality

Example: inequalities in Kottathara Panchayat

		QR	CV	Gini	Atkinson		Thiel
		$(0.2-0.8)$			$\mathrm{e}=0.5$	$\mathrm{e}=0.8$	$\mathrm{t}=2$
		0.286	0.643	0.364	0.136	0.300	0.206
Household health needs	Indicator	SE	0.077	0.008	0.040	0.004	0.010
	SE	0.005					
HH health expenditures (PC)	Indicator	0.008	3.820	0.750	0.520	0.810	7.300
Income (consumption HC_X)	SE	0.005	0.525	0.014	0.020	0.010	2.000

Kotthatara Panchayat: social inequalities (2003) © (Udem s. Haddad, 2012

The B-O decomposition
-! The health gap (pred.):

-! BOD :
-! decompose inequality into its contributing factors
! extent to which inequalities are explained by inequalities in the distribution / effects of observed health determinants

BOD decomposes the health gap:

-! Based on regression
-! E-component: reflect differences in observable characteristics
\bullet ! group differences in the distribution of health determinants (endowments E).
\bullet ! C-components: reflect differences in the effects of health determinants: -! indication of a discriminatory effect / unequal treatment of the groups
-! CE (interaction), usually combined with E

Application

\bullet ! Multiple topics
-! Gender inequality
-! Income \& poverty analysis
-! Rural - urban differences
-! Health: comparison of vulnerable - non vulnerable groups \bullet !migrant, indigenous, poor, etc.

- ! Intervention research
\bullet ! role of specific factors -!over time,
-!intervention vs non intervention sites
-! explain gaps by a set of factors that vary systematically with the group variable

B-O Decomposition (2)

$$
\begin{aligned}
\bar{y}^{2}!\bar{y}^{1} & =!^{2} \bar{x}^{2}!!^{1} \bar{x}^{1} \\
& =\left(\bar{x}^{2}!\bar{x}^{1}\right)!^{1}+\left(!^{2}!!^{1}\right) \bar{x}^{1}+\left(\bar{x}^{2}!\bar{x}^{1}\right)\left(!^{2}!!^{1}\right) \\
& =x!^{1}+!x^{1}+x! \\
& =E+C+C E
\end{aligned}
$$

- $\mathrm{E}=$ gap in the distribution of determinants (endowments) :
\bullet ! Ex: differential access to community services
$\bullet!C=$ Gap in the effects of health determinants:
\cdot Ex: differential ability to take advantage of existing services.
\qquad
UdeM / S. Haddad, 2012

Heterogeneity of indigenous populations: morbidity across social groups (standardized by age and sex)

Haddad S et al., BMC Public Health 2012, 12:390

Underweight gap: BOD between tribal and non tribal groups

- fairlie bmi_scale_dummy a103 age1 age2 educ_dummy bpl_apl landown_dummy crowd_dummy waterqual_dummy
wagelab_no65over_dummy [pweight $=$ indweigh t], by (nontribe 2) ro

bmi_scale_-y						$\begin{array}{r} 1474 \\ 662 \\ 812 \\ \hline .46212056 \\ .22951821 \\ \hline .23260255 \\ \hline .12607562 \end{array}$
	Coef.	Std. Err.	z	$p>\|z\|$	1958 Conf.	Interval]
sex \|	. 001904	. 0017582	1.08	0.279	-. 001542	. 0053501
agel ${ }^{\text {\| }}$. 0149224	. 0080249	1.86	0.063	-.0008061	. 030651
age2	-. 0069891	. 0066389	-1.05	0.292	-.020001	. 0060228
educ_durny \|	. 0540669	. 0130755	4.13	0.000	. 0284395	. 0796944
bpl_ap1 \|	. 0479726	. 0235755	2.03	0.042	. 0017654	. 0941798
landown_du-y \|	. 0111001	. 0089651	1.24	0.216	-. 0064712	. 028671
crowd_dumny \|	. 0153446	. 009066	1.69	0.091	-. 0024244	. 0331135
waterqual_-y \|	-. 0025968	. 0021705	-1.20	0.232	-. 0068509	. 0016574
wagelab_no-y \|	-. 008779	. 0112265	-0.78	0.434	-. 0307825	. 0132244

© UdeM / S. Haddad, 2012

Decomposition of the health gap between tribal and non tribal populations

	Underweight		Anemia		Goitre		Hypertension\&	
	M1*	M2**	M1*	M2**	M1*	M2**	M1*	M2**
Prevalence (predicted)								
General population	0.237	0.237	0.339	0.039	0.037	0.037	0.227	0.228
Tribes	0.466	0.469	0.101	0.102	0.087	0.086	0.237	0.235
Health Gap (total difference)	0.229	0.232	${ }^{0.062}$	${ }^{0.063}$	0.050	0.050	0.009	0.007
Explained (characteristics)	0.003	0.118	0.001	0.054	0.007	0.022	0.018	0.006
Unexplained (condition)	0.226	0.114	0.061	0.009	0.043	0.028	-0.009	0.002
CI-Lower bound	0.17	0.04	0.04	-0.02	0.02	0.00	-0.01	-0.06
Cl-Upper bound	0.28	0.19	0.09	0.03	0.07	0.06	0.07	0.07
\% Unexplained by individual or family characteristics								
*: covariates : age 18-30, age 31-59, sex								
**: covariates: as in M1, plus: Education, Poverty (BPL), Land ownership, Wage laborer, Crowd, Water quality \&: percentage of unexplained gap is not computed due to the existence of negative values in the unexplained health gap								

Haddad S et al., BMC Public Health 2012, 12:390

Part of the Gap attributable to changes in the distribution of endowments

Illustration (Oaxaca / fairlie commands in Stata).

-! Child Hemoglobinemia levels in Ghana
-! Baseline 2000
-! Post-intervention period 2004.
(3) Social inequality in health

Concentration curve

Concentration curve

-! Outcome: needs, participation, benefits, expenditures...
-! Concentration curve
! Y: cumulative percentage of the outcome variable
-! X: cumulative percentage of the population ranked by income** level (poorest to richest)
** or any other measure of standards of liv
-! Position of the curve:
-! above diagonal if higher concentration among the poor: mortality, deprivation, poor health, social exclusion, etc.
-! below diagonal if lower concentration among the poor: well-being, good health, savings, leisure time
© UdeM / S. Haddad, 2012

Concentration curve

The deviation curve

Source: simulations de l' auteur

Concentration curve dominance

Illustration

Wagstaff, 2000
© UdeM / S. Haddad, 2012

The concentration index

- ! CI: 2 * area between CC and the line of equality (diagonal)
\cdot - $-1<\mathrm{CI}<1$
\bullet ! Sign: (-) if outcome:
-! is more concentrated among the poor (mortality, poor health) $\bullet!$ diminishes with standard of living
- ! Properties:
\bullet ! standardized measure (comparability)
-! scale independence \& Population independence
-! decomposable
-! Can be"
-! adjusted for cluster sampling (software DAD)
-! standardized for age, sex, etc.

Interpretation of the CC

-! Carries implicit value judgement:
\cdot ! reflects a given level (α) of inequality- aversion
\bullet ! usually: $\alpha=2$
-! Interpretation
-! Relationship berween income and health
\bullet ! Doesnot reflect income inequality

Distinctions between Lorenz - Concentration curves

Lorenz

1.! One variable (outcome)
.! Individual ranked by
.! Below the diagonal
.! Gini: $0<\mathrm{L}(\mathrm{p})<1$
2.! Individuals ranked by income level
3.! Below or above the diagonal
4.! CI: $-1<\mathrm{C}(\mathrm{p})<1$

Poverty

\bullet ! An ethical concept
-! "individual situations that are inacceptable, that means unfair, unjust, in a given society" (Asselin \& Dauphin)
$\bullet!$ normative considerations, in regards to equity
\bullet ! Rooted in various philosophical traditions
\bullet ! Welfare / economic well-being considerations -!Income - utility information
$\bullet!$ Freedom considerations, social contract theories
-!Basic capabilities - information on rights, freedom to achieve
-! Humanitarian preoccupations
-!Basic needs - information on specific forms of deprivation

Poverty line

-! A standard of consumption / welfare
\bullet ! A reference level in a given society.
-! Specification
-! Absolute PL:
-! Cost of a bundle of goods required to fulfill basic needs -!Food energy requirements (ex: 2200 cal per adult)

- !Basic non food consumption needs.
-!Assumption: equivalent needs.
\bullet ! Relative PL:
\cdot ! Ex : 50% of the median income adjusted for family size.

How is poverty defined?

- ! Process
1.! identifying a uni- or multidimensional subspace for equality,
$2 .!$ specifying a critical level for each
- ! Most common approaches in practice
-! Living standard measures: income (capture opportunities) expenditures, consumption (better proxy for permanent income)
-! Poverty line
Or
! Non welfarist measures: "multidimensional poverty indicators"
-! Poverty profiles, asset scores, ranking approaches

Poverty lines in Canada

\bullet ! No "official" PL
-! The Low-Income Cut-Off (LICO)
-! income level at which a family may be in straitened circumstances
! 35 LICO depending on family and community size.
http://www.statcan.ca/english/freepub/75-202-XIE/2006000/ technote1.htm)
-! Low-Income Measure (LIM)
-! 50% of the median income of an equivalent household.
! Market-Basket measure (MBM)
-! Disposable income required by a household to meet basic needs
! Human Resources and Social Development Canada (HRSDC)

Poverty indicators

-! Head count index (incidence)
$\bullet!H=q / n \quad$ (\% pop below the poverty line z).
-! Poverty gap \& PG Index (intensity)
$\cdot!$ PG $=1 /(N) \cdot \Sigma(z-y i)$ (monetary value)
$\cdot!$ PGI $=1 /(N) \cdot \Sigma((z-y i) / z) \quad(P G$ as a \% of poverty line) -!average shortfall of the total population from the poverty line. -! min cost to eliminate poverty (if perfect targeting)

! Squared poverty gap (severity)

$\cdot!$ PGI $=1 /(N) \cdot \Sigma\left((z-y i)^{2} / z\right)$
\bullet ! Takes into consideration inequality among the poor

HCI Treats all poor similarly!

Poverty incidence: Income curve and poverty line

Z: Pov. line $\mathrm{HCI}=\mathrm{q} / \mathrm{n}$

56
© UdeM / S. Haddad, 2012

How poor are the poor?

Comparing poverty over time

-! Changes in poverty indicators

- ! Decomposition: gains and population shifts
-! Growth
-! Redistribution
-! Interaction

Lorenz curves and Gini Index:
Income inequality in Burkina Faso

annual consumption
per adult equivalent
(
Gini

