THE MCHP SASPC TUTORIAL

September 14, 2005

TABLE OF CONTENTS
GENERAL GUIDELINES

Q) WINAOWS IN SAS ...ttt e bt bbbt e e e e e e e et e be st e sneeneennas 3
* Navigation commands

* Five SASwindows

(o) Lo\ = T =T 1= 0= o) SRS 4
0 SAVING TIIES it nr e ne e 4
L O 0= 01741 0o 1 11 - 5
* DOCUMENTING FIIES ...oeeeieeeees ettt see e saeenreeneens 5

THE SASPROGRAM

PIOGEAM SYNTAX.....eiieeeiieeitieie et r e se e b sae e nb e e n e e ne e reen e e 7
o Example of SAS Program SYNEBXcccceereereereeererseesseeserseessesssesseessesessseessessssseessesssesses 8
o SASProgram deVE OPIMENTcoiiirerieiiriereeie et sa b e se e nes 9
Debugging Tips (MeSsageS iNthe 100).....c.ccvuiiieiieiice e 9
L ([0 PR 10
L (0 TSRS 11
L T 11100 OSSR PRRR 12

PREPARE, VIEW, EXPLORE, MANIPULATE, ADD TO, PROCESS DATA

L Prepar@thedala SEbcceciiiiee ettt ene e reene s 14
* Thedatamatrix (values, variables, 0DSErVations).........cccceereeriereeneeie e eee e 14
LIV (o LYol 7= ol (= 1= (L 01 15

(Iength, numeric vs. character, missing values)
» SASstatements required to read/save permanent/temporary:

0 S A S A SEES . eeeeeeeeee ettt et e e e e e —————————————————————————— 16
¢ NONFSAS RO SELS ..o 17

* ASCII (e.g., smulated MB Health data)
e generated by other software packages

L = 0] 0 (Y o100 = o S 20
» Creating/reading permanent SAS data set

» Creating/reading temporary SAS data set
* Creating permanent SAS data set from ASCI| data

2. VITOW TNE AALA ..ottt ettt sb ettt neene e 21
* PROC CONTENTS - to obtain list of variablesccccveviniiininneeee e 21
* PROC PRINT - to obtain list Of VAlUESccovieiiiiicieeee e 22
o PROC SORT - t0 SOt the datacevveeeeiieieee e 23
* PROC FORMAT - to create formats for manipulating the data..............cccceveienenenene. 24

1. for labeling values; used with FORMAT statement ("Customizing Data")
2. for grouping valuesto "Create New Variables"; used with PUT statement

I = o [0y = (0 = P 26
3 EXPIOr @ TNE AALAL ... 26
* Numeric statistics
o PROC MEANS ...ttt sttt sttt ne b nnns 27
* PROC UNIVARIATE ...ocotiteieesteeet sttt st sttt nnns 28
I - o [0y (= (01 = S 29
* Frequency tables
L O O o = 29
® PraCtiCE EXEITISES ..ouiiviruieieieiiesie sttt sttt sttt st sbe st see e b nne s e 32
4. ManipulatEtNE aLacccveieeecieee et e a e e nns 33
» Basic techniques
» Create subgroups of data (WHERE, KEEP/DROP, OBS=)ccccecvviveieiicniene. 33
» Customize display of output (LABEL, FORMAT, TITLE, FOOTNOTE) 34
I - o [0y (= (01 = S 37

* Create new variables
o Create NeW VariablES USING:ccoveieiiieie ettt ne s 38
e |F/THEN or PUT statementsto group values of variables,
» arithmetic operators to calculate variables
» SUBSTR function to shorten the values of variables,
I = o [0y = (01 = S 39

5. Adding Variablesand Observationsto Data SetS........ccccceeieeiecieesiese e 40

Adding observations using the SET statement..........c..oovveiiiiie i e e
o Concatenating Dala SEtS.ove i e e
* Interleaving Data Sets
Adding variables using the MERGE Statement.ouvveveiveniieieciiieine e
e One-to-One Merge

o ONETO-ManNY MEIQE. ..ot e e e e e e
PrACH CE EXEICISES. . vttt ettt et et et e e e et e et e e e e te eae e e e e a e

L T = W 0 === T

J AN = YRS = 1101 1]

B0 0] o PP 46
BY-Group ProCeSSING (FITSt. [LaSt.)eue e o e e e e e e e e e e e e e e 48

REIAIN SEALOMENL. .. .ottt e e e e e e e e e e e e e e e e,
PraCli CE X GO, - . vt et et et e e e e e e e e e e e e

.50
51

THE MCHP SASPC TUTORIAL

The SAS system provides away of creating and/or accessing a variety of data sets, with
techniques for manipulating the data to obtain output ranging from simple frequency tables to
complex three-dimensional graphs. SAS software is available from the University of Manitoba
for employees and students; more detailed information regarding SAS is available from the SAS
website.

The goal of the MCHP online SAS tutorial is to provide the new user with enough knowledge of
SAS to trandate basic research questionsinto SAS code, enabling completion of the research
project required by the Epidemiology of Health Care course at the University of Manitoba
Additional "intermediate”" training material has been developed for new users of the MCHP data
bases; this documentation covers arrays, do loops, first/last by-group processing, retain
statements, and how to work with dates. (Complete SAS Institute manual documentation is
available online under Academic Software References, Vendor Reference Materias, on the
Software Team Resources Page, recognized with University of Manitoba | P addresses.)

The MCHP online SAS tutorial is best viewed using at least Version 3 of Netscape or Internet
Explorer, with a minimum setting on an SVGA monitor of 256 colours, 800x600 pixels. It is
intended for use with SAS Release 9.1 (Windows 95/98 or Windows NT operating system). In
addition to the usual system Help menu, this version of SAS provides additional information to
licensees under the Help headings of "SAS OnlineDoc" and "Online Tutor".

Asasdf-guided tutorid, it is suggested that the user review the general guidelines and SAS
program syntax first. The remaining material might then be followed sequentially: how to
prepare a data set, how to view the data, how to explore and manipulate the data, how to add
observations and variables to a data set, and how to process the data. (If the user runs SAS and
the browser simultaneously, example code can be copied from the browser to the Program Editor
window in SAS.)

Severa sample data sets are referenced:
1. Height/weight - is used throughout for illustrative purposes.

2. Simulated clinical - can be created by the user to complete the questions found at the end
of the sections on viewing, exploring, manipulating, adding variables and observations,
and processing the data (with links to how the program, log, and output should look).

3. Simulated M anitoba Health - the data set used by students of the Epidemiology of
Health Care course to compl ete the required assignments, obtainable from MCHP.
Additional gquestions are included here, for use with this data set, and complete with links
to the program, log, and output.

SAS hasimproved its interface to the point where alot of analysis can be simply and quickly
carried out using menus, examples of which are provided in the alternatives to programming

section. It is often desirable, however, for users to have a basic understanding of SAS
programming. Knowledge of SAS programming facilitates not only spotting some of the pitfalls
inherent in processing data, but also maintaining more complete documentation of al the steps
required to produce any given output. It is all too frequently necessary, in the course of carrying
out research, to reproduce results which may have required a complex series of data processing
steps.

It isimportant to recognize that there is often no one "right" way of obtaining accurate results.
For ssimplification and continuity, this document reflects one style of writing SAS code. There
are other more or less efficient ways of constructing SAS code, however, al of which may
produce identical results. Where aternatives exist for generating results, alegitimate, and often
preferred, choice is code that the user understands.

Resources, References and Acknowledgments

GENERAL GUIDELINES
a) Windowsin SAS

This section provides a brief overview of the SAS windows environment, of how to navigate
within and among windows. Navigation commands can be carried out in several ways:

Command line - the command can be typed in the command box at the upper left of the
screen, or window-specific commands can be typed on a command line (invoked using
Tools/Optiong/Preferences/View in the SAS menu). This method tends to be used less
frequently because of the ease of use of the other, newer, ways of navigating SAS
windows.

Pull-down menus - invoked by |eft-clicking on a menu heading. Different menu options
are available, depending on which window is activated.

Pop-up menus - invoked by right-clicking on awindow. Most windows will have this
option. They provide a useful way of accessing Help menus.

Keys window - assigns commands to keys/key combinations (see description of Keys
window below). Right clicking on this window will display a pop-up menu which
includes a Help option; Help/Using This Window can be accessed to obtain alist of
examples of key commands.

Toolbars - icons that provide shortcuts for a number of commands; toolbars can be
customized by going to the Tools/Customize menu. The Programming Windows icon on
the toolbar, for example, can be used to restore the windows display to their default
setting.

When SASisinvoked five windows are automatically opened, displaying labeled bars below
each window. Left-clicking on any of the five bars will activate the window. This isimportant
for carrying out any of the commands associated with a window.

The five windows are:

1. Program editor - isused for creating and editing SAS programs (and other kinds of ASCI|
files). Such tasks can also be accomplished with the Notepad window (opened through the
Explorer window File/New/Source Program). SAS does not do anything with material
entered here until the program is submitted for processing (Submit/Run on the Program
Editor menu, or the runner on the toolbar).

2. Log - displaysinformation, once a SAS program is submitted for processing, about how the
program ran, or processed the information. It is extremely important to examine the SAS log
and to understand its messages in order to ensure that output has been generated as
instructed; they facilitate any debugging that may be required.

3. Output - displays output, once a SAS program is submitted, such as tables and graphs (if this
iswhat has been specified in the program).

4. Results - thiswindow helpsto manage SAS output.

5. Explorer —thiswindow is used to view and manage files/data sets (similar to the Microsoft
Windows version of Explorer). SAS libraries, files, and shortcuts can be created within this
window.

Another useful window isthe Keys window, for creating shortcuts. Thiswindow is called up
from the Options menu, and shows how commands have been assigned to various keys and
combinations of keys. These can be changed and saved to suit your preference; some useful key
assignments are:

* next - to move through al the SAS windows that are open.

» recall - to bring back the most recently submitted set of programming code back into the
Program Editor window (this does not work in any other window).

» clear - to clear everything within the activated window (Program Editor, Log, or
Output). Thisincludes material not visible on the screen.

* undo - to undo the last keystroke (e.g., undo the clear command if awindow was
inadvertently cleared).

For additional information on how to navigate through the SAS windows environment, new
Windows users are referred to the tutorial titled " Getting Sarted with SAS Software” under the
SAS Help menu, which is provided with the software.

b) File Management

"Files' can refer to data sets (both SAS and non-SAS), as well asto other types such as the
ASCII files generated when SAS programs are saved from the Program Editor window or when
material is saved from the Log and Output windows.

Right-clicking on afile will yield the file properties while double-clicking with the |eft button
will open thefile. SAS data files generated in SAS version 9.1 will normally have ".sd7" asan
extension and SAS catalog fileswill havea".sc7" extension.

The following section covers saving, organizing, and documenting files.
SAVING FILES

When saving files within the Program Editor, Log, or Output windows, the File/Save As option
will automatically create the following file extensions. " .sas" for SAS programs created in the
program editor window, " .log" for output from the log window, and " .Ist" for material

generated in the output window. The Results Window can also be used to view, save, and
manage individual results which appear in the Output Window.

Material entered within awindow should be saved at periodic intervals (e.g., every 10 minutes).
This can be set up automatically with the autosave option in the Tools menu
(Optiong/Preferences/Edit). It is not necessary to save logs and outputs as long as the programs
and data that produce them are saved (for important runs, however, it may be desirable to save
such files, in addition to generating a paper copy).

ORGANIZING FILES

A "My SASFiles" directory isautomatically created upon installation of SAS Version 9.1; the
location may vary with the operating system. Windows Explorer, which can be invoked using the
button at the top of the SAS Window display (/Tools/Find), can be used to find the exact path of
this directory (in the Advanced menu, specify Folders rather than Files and Folders, and in the
Name and Location menu enter SAS as the search string). The user could then set up, for
example, one directory per project, with separate subdirectories under each project directory for
SAS programs, logs, output, and data sets.

Librariesrefer to the physical location where SAS files are stored. By default, several libraries
are dready defined by SAS:

1. WORK - used by SASfor storage of temporary files.

2. MAPS - contains SAS maps for most countries in the world. These maps are used with the
SAS GMAP procedure.

3. SASUSER - automatically generated by SAS to save SAS default settings.

4. SASHELP - containsthe SAS help catalogs; they are views (atype of data set) that describe
every active library, data base, and catal og.

Data should not be stored in any of the default libraries; however, new libraries can be defined so
that they, too, are automatically created each time SAS is started up (by specifying enable at
startup when first created).

To assist in specifying to SAS where a particular fileis located, a one-word reference can be
assigned for the path of the file, particularly useful when the path involves along list of sub-
directories. The LIBNAME statement can be used, for example to assign alibrary called mydir
to represent ¢:\My Documents\My SAS Files\projects\ami. To direct SAS to a particular data set
(e.g., amidata.sd7 in the ami directory), the user could simply specify mydir.amidata (the SAS
data set extension does not need to be specified).

DOCUMENTING FILES

Documentation of both SAS programs and SAS output such as graphs and tablesis essential for

effective management of files. For programs, comment lines are useful for basic file
documentation and for explaining what certain sections/lines of SAS code are intended to
accomplish. For output, titles and footnotes can provide useful information such as project title,
type of analysis, type of data, and what exclusions may have been made, instead of having, for
example, the default "The SAS System” at the top of each page of outpui.

THE SASPROGRAM
a) Syntax

SAS programs are normally devel oped within the Program Editor window. Nothing entered in
thiswindow is processed, or read by SAS, until the program is submitted, or executed (unlike
commands). A SAS session lasts until the user exits the SAS program.

Upon submission, the program from the Program Editor Window and any messages will appear
in the Log window. After SAS has finished processing the program, the Output window, with the
requested output, should be displayed on top of the other windows. If there were problemsin the
processing, the Log window might instead be displayed. In either case, though, the first thing
that should be done is to check the SAS log for messages before reviewing the output. Note that
the linesin the log output and the page numbers in the output generated in the Output window
are numbered sequentially and cumulatively for the entire SAS session. They are reset with each
new SAS session.

If there are problems, the submitted program can be brought back into the Program Editor
window with a Recall command, changes can be made (saving the revised program), and the
program can be re-submitted. The Output and Log windows should be cleared first (Clear
command) so that new material is not mixed in with old material (all material generated in both
Log and Output windows are kept cumulatively throughout the SAS session). If desired, the
contents of any of the three windows can be saved using the File/Save As commands.

A SAS program consists of SAS statements which are constructed using SAS language, several
key characteristics of which are described below, followed by an example program.

» Case. Lower caseistypically used in writing SAS programs athough SAS currently
recognizes upper case in a program (upper case was used in the example program below
simply to denote SAS keywords). If any valuesin adata set are in upper case, however,
references to such values within a SAS program must also be upper case. Referencesto
values and variables must also distinguish, where relevant, numbers from letters. For
example, the number "0" must be distinguished from the letter "O" within a SAS program
for it to beread accurately (the "0" in the variable "diag01", for example, is numeric).

* Naming conventions. Names of both data sets and variables currently can be up to a
maximum of 32 characters long (starting with aletter or underscore) and can include
numbers.

» Keywords- are used to specify the tasks to be carried out by SAS (e.g., SET, RUN).
Keywords should not be used as variable or data set names.

» Statements - can be longer than one line and can begin anywhere on the line (alternatively,
one line can have several SAS statements). ALL SAS statements must end with a semicolon
(";™), while indentation of statementsis optional.

» Steps- represent broad categories of tasks within which most programming isdonein SAS.

Typicaly used are:

o DATA steps (e.g., for creating data sets, for creating new variables, etc.) and
o PROC steps (e.g., for creating tables, graphs, formats, etc.).

Each DATA and PROC step should end with a"RUN;" statement.

» Comment lines - are useful for program documentation or for temporarily making SAS
statements non-executable. They instruct SAS to ignore material contained within:

a) /* and*/ Thiscan generaly be used amost anywhere (e.g., within a SAS statement).

[* Thisisan example. */

b)* and; Thiscan NOT be used within a SAS statement.

To comment out existing SAS statements (which already end with a™;"), simply add * at

the beginning of a statement.

* Thisisan example. ;

EXAMPLE OF SASPROGRAM SYNTAX

PROC FORMAT,
VALUE'M' ='Male
'F' ='Femal€';

RUN;

This PROC step is an example of how to create labels for
a gender variable consisting of M/F values. PROC,
FORMAT, VALUE, and RUN are the SAS keywords.
There are 3 statementsin this 4-line program (the VALUE
statement, ending with ;" is 2 lines long).

[* create a SAS data set*/
DATA newl,

[* read a SAS data set*/
SET original;

* keep only women ;

|F gender="F',;
RUN;

This DATA step is an example of creating a temporary
data set called "newl" from a temporary SAS data set
created earlier in the SAS session called "original”; it
instructs SASto keep only femalesin the "newl" data set.
The two types of comments are also illustrated.

PROC FREQ DATA=new];
TABLES gender;
RUN;

This PROC step instructs SASto read the "newl" data set,
and to create a table showing the distribution of the
gender variable.

Program Development

A document prepared by the Manitoba Centre for Health Policy on program devel opment
provides suggestions on how to structure SAS code and what might be included in the program.
This section builds on that document.

SAS code can be entered consecutively within the Program Editor window to create alarge
program, or the code might reside in other files that SAS can be instructed to find and process.

The above 3 components in the table, for example, could be in 3 different files on afloppy disk
called study.fmt, prog.sas, and analyses.sas. Two ways in which SAS could read and process the
filesare:

1. Open each file into the Program Editor window until all 3 are present in the window. All
code from each file will be seen in thewindow. Note that SAS programs can be submitted
in portions (each of the above 3 components could be submitted separately) or all at once,
combining a number of DATA and PROC steps.

2. Within the Program Editor window, use %include to process each file, i.e., submit the
following 3-line program:

%include 'a:\study.fmt’;
%include 'a:\prog.sas;;
%include 'a:\anal yses.sas;

An important distinction between the two approaches is that the first approach allows the exact
code which generated the results to be seen inthelog. %includeis used more typically when
code is used repeatedly or when the user is familiar with the file(s) being included.

b) Log M essages. Debugging the SAS program

Problemsin programming syntax can generally be identified from the SAS log and can be
corrected by recalling the program (under the run menu) into the Program Editor window to
make the necessary changes. Before submitting the corrected program, it should be saved, at the
same time clearing both the log and output windows.

(This section focuses only on syntax errors; however, it is also possible for SASto calculate a
new variable using syntactically correct code that resultsin inaccurate cal culations, or in results
not reflecting what the user intends. For this reason, it is always wise to check values of a new
variable against values of the original variable used in the calculation (asillustrated in the section
on creating new variables.)

There are 3 main types of messages that SAS will generate in the log: 1) Notes, 2) Errors, and 3)
Warnings. They are highlighted here with 4 examples:

1."NOTE"

NOTEs are always generated in the log; they provide important information about the processing
of the SAS program such as:

* number of observations and number of variablesin anewly created data set.
» length of time taken by the processing (both real and cpu time).
* indications of certain types of programming errors.

Tensopt=subsfrlopol .l .2)= 13" :

1189

1190 #(GQuestion Z does not need new variable code) ;
1191

1192 #&ss---Question J----EEsE;

1193

1194 iT "BEo0 '(=dilgﬂl(='ﬂ£ﬂ5$' then hipfx=1;
1195 elee iT "B20 ‘'<{=diagi2<="82088" then hipTx=1;
1196 glse hipfx=0;

1197

1198 #[Note that substring could be used instead.
1199 Also note that a DO loop, with an ARRAY,
1200 can be used for performing repetitive tasks
1201 such as the above and should be used when
1202 many Tields need to be processed.)

1203

1204 #[GQuestion 4 does not need new variable code)s;
1205

1206 ##k8---Question 5---=-- RRER;

1207

1208 deathall= [.<{deathsop<9999);
1209 death30 [s{deathsep{=390);
1210 readm30 ('":"<{dayestor<{="90");

1212 run;

OTE: MNumeric values have been converted to character
values at the places glven by: (Line):(Column).
1188:18

IMOTE: Character values have been converted to numeric
values at the places given by: [Line):(Column]).
1210:12 1210:286

OTE: Variable opol is uninitialized.

OTE: The data set WORK.FINAL has 5000 observations and 40
variables.

DTE: DATA statement used:
real time 0.55 seconds

[Ouput-(Unssed) [Log - (Untitled) (@) Program Editor - (Unt.|

5 NOTEsareillustrated in the above log excerpt:

» Thefirst NOTE indicates that numeric values have been converted to character values
for the variable op01, indicating that SAS sees this variable as numeric, not character.
But this variable was read in as character, suggesting another kind of problem with the
variable - see the 3rd note.

» The second NOTE indicates the converse of thefirst - that character values have been
converted to numeric at two placesin line 1210. This indicates that even though the

10

values are specified as character (with quotes), SAS will convert them to numeric,
because the variable was originally read in as numeric. The conversion can affect
accuracy of results, so it is advisable to make the necessary changes. Thisis easily fixed,
simply by taking the quotes off the values so that the statement reads readm90 =
(.<daystor<=90);

* Thethird NOTE indicates that SAS does not recognize the op01 variable and, in this
case, precipitates the first note. The reason this variable isuninitialized isthat it was
spelled wrong, using opol (letter "0") instead of op01 (numeric "0").

» Thefourth and fifth NOTEs are always generated for DATA steps; they indicate, in this
case, that the temporary SAS data set final has 5000 observations and 40 variables and
that 55 seconds were needed (in real time) to process the DATA statement.

2."ERROR"

Error messages are the most obvious clue that something is wrong with the SAS program. Unlike
Notes and Warnings, the program will not complete processing until the necessary changes have
been made. Because one error can result in multiple error messages, fixing the first-occurring
error will frequently clear up the remaining error messages.

11

927
928 data Tinal;
9239 set test

8930 #Ess---Question l=-=-=-=-= LLL L
2oo TG
2oo
|2331 if 'B2o0 ‘"<{=diag0dl1<{="82089"' then hipfTx=1;
201 180
|g93e else iT "BE20 '<{=diagdE<="82099" then hipfx=1;
201

180
|2933 else hipfx=0;
201 180
RROR: Mo matching IF-THEM clause.
RROR 200-322: The symbol is not recognhized.

RROR T6-322: Syntax error, statement will be ignored.
RROR 201-322: The option is not recognized.

RROR 180-322: Statement is not valid or it is used out of
proper order .

834 deathall
8935 deathdo0
LL-

RROR 79-322: Expecting a +.

[.<deathsep<39399)
[-{deathsep<=90);

836 readm80 = [.{daystor<=30);
937 run;

[Output-Uniled) |[(*] Log - (Untitled) (&) Program Editor- (Unt. |

The above log excerpt shows a number of Error messages, all resulting from only one error. The
first indication of the problem (200) denotes that the underlined symbol is not recognized.
Reviewing the SAS codein the line just before **** shows that the statement set test has no
semicolon. Adding ; at the end of the statement will resolve ALL Error messagesin this
program.

3. "WARNING"

Warnings are frequently indications of problemsin how SAS processed the program (although
not always, and it should be noted that SAS may not always stop processing the program).
Warnings should always be investigated.

12

real time 0.10 seconds
cpu time 0.068 soconds

37 proc freq;
38 tables tranadm trandis;
39 whare hipfx=1;
C 1] format tramadm Ztrnadml trandis Strndisl.;
]
ARMING: Variable TRNADHML mot Tound in data set WORK.FIMAL.
RROR E00=-3Z2: The symbol i@ not rocognizod.
41 titleZ "Question 3 - Hip fractures by transfers’;
42 run;

OTE: The SAS System stopped processing this step because of
BFFOFE.

OTE: PROCEDURE FREQ used:
real time 0,08 seconds
cpu time 0.04 seconds

44y proc freq;
45 tables icdiThrk # (charyes gender);
4B format lcdiTork 2icdiT1. charyes Scharl. gender Sgender| .

47 titieZ "Question 4 - 1T ICD-9-CHM categories by CCI, by
47! Gender";
Y8 run;

OTE: PROCEDURE FREQ used:

real time 0.41 seconds
cpu time 0.25 seconds
0 Ouput- (Unied) [Log - (Untitled) (4] Program Editor- pro._. |

In the above example, the WARNING indicates that SAS is expecting to find a variable called
$trnadml, and an ERROR message is generated indicating that the $ symbol is not recognized.
The problem, however, isthat SAS does not recognize that $trnadml is aformat which, because
it is associated with the variable tranadm, requires a period at the end (i.e., format tranadm
$trnadml. trandis $trndidl.; will resolve the problem).

A very common WARNING isthe one illustrated above, saying that a quoted string has become
extremely long. Most frequently, the problem is a quote being inadvertently left out. In this case,
adding the missing quote (i.e., '820 '<=diag02<='82099") will fix the problem and remove the
Error messages showing up in the rest of the program.

Thiswill not, however, fix an associated problem. A most important caveat when receiving this
type of log message isto also check the message above the menu on the Log window. If it says,
asin thisexample, " DATA STEP running" , then steps must be taken to stop the program from
running. Even though SAS will continue to process other programs, results of such programs
may be inaccurate, without any indication of syntax problems showing up in the log. Several
suggestions to stop the program are:

e Submit thefollowing line: '; run;

» Submit thefollowing line: *))%*"""))*/;

o |If dl elsefails, exit SAS entirely (making sure that the revised program has been saved)

and restart SAS.

13

|. DATA PREPARATION
TYPESOF DATA SETS

This section provides both general guidelines and specific details on preparing data sets (both
SAS and non-SAS). For the data sets referenced in this manual, detailed instructions are
provided in other sections on how to prepare the htwt data set, the clinical data set, and the
simulated Manitoba Health data set.

Data sets can be thought of as a table having columns and rows, and consisting of three main
components:

1. Vaues Numbers and/or |etters of the alphabet comprising the
information in each cell (column/row combination).

2. Variables Names assigned to columns of information; currently, they can
be up to 32 characters long (starting with aletter or underscore).

3. Observations (Records) Usually oneline, or row, of information per person or event;
each observation (also known as arecord) consists of a set of
values.

Illustrated below, on the left, is the raw data set htwt. The viewtable on the right shows how the
data become meaningful once the appropriate information on the data has been specified to SAS.

|| neme |[sex|age]| height | weight

L. qu.ljh‘l:‘}f kA 41 7 170
Aubrey M 41 74 170 |2 |Ron M 42 b8 166
Ron M 42 68 166 | 3 |Carl M 32 20 15§
Car| M 32 70 155 L4 |Antomo M 39 72 167
Antonio M 39 72 167 § |Deborsh F 30 BE 124
Deborah F 30 66 124 .5 1..,'5':I]'_"E‘|Ir'l':’ F 13 B 115
:Ia?quelina E gg EE :é? [7 |Helen F 2% B4 121
elen P8 | Dovi 7 58
David M 30 71 158 | e S R .
Janes M S3 T2 175 (0 |Mcheel M 32 63 143
Michael M 32 69 143 — - - =
Ruth F 47 69 139 e _F | & 6 8
Joel M 34 72 163 12 | Joel M 34 72 1683
Donna F 23 62 98 (13 |Donna F 23 B2 a8
Roger M 36 75 160 [14 |Roger M 36 75 160
Yao M . 70 145 115 [vao M 70 145
Elizabeth F 31 BT 135 116 |Elzabeth F N 67 138
Tim M 29 71 176 27| Tim M 29 N 1%
[Busan F 28 65 131 16 [Susan F 28 65 13

M and F, for example, are the values for the variable SEX; the next column represents the
values for the variable AGE. Each observation is now consecutively numbered, in this case,

14

from 1 to 18. Thefirst observation thus has a value of Aubrey for the variable called NAME, a
value of M for the variable SEX, avalue of 41 for the variable AGE, avalue of 74 for the
variable HEIGHT, and a value of 170 for the variable WEIGHT.

In other words, the first observation is an individual named Aubrey who is a 41-year-old male
who is 62" tall and weighs 170 pounds. (Normally a codebook will specify the unitsin which the
values are being measured. In this case, height, for example, is measured in inches and weight is
measured in pounds.)

The values for any given variable will have the following characteristics:

* Length. Numeric values are stored in SAS as floating-point, or real binary, numbers.
According to the SAS Language Reference (1990:86), floating point representation is "a
form of storing in scientific notation” ("in which values are represented as numbers
between 0 and 1 times a power of 10") "except that on most operating systems the base
isnot 10, but is either 2 or 16".

SAS assigns a default length of 8 bytes of space to numeric variables and, where space
permits, this need not be reduced. Cody and Pass (1995:276) indicate that "this does not
mean 8 significant figures; it means that 8 times 8, or 64 bits (8 bits per byte) are used to
store the number”. They add that 8 bytes "is equivalent to what used to be called 'double-
precision’ in other languages. Thiswill vary not only by which computer language you
are using, but on which computer and under what operating system you are running'".

4 bytes of spaceis generally sufficient for most numeric variables, but a SAS Institute
manual should generaly be consulted before changing the lengths of numeric variables
because of the potential |oss of precision.

* Numericvs. character values. If calculations are not necessary (e.g., values of 1 and 2
for GENDER), it is recommended that such numeric values be assigned as character
values (in the INPUT statement when reading a raw data set, or using a PUT statement
within a DATA step when accessing a SAS data set). Conversion, where possible, to
character decreases space requirements. Values for the variable GENDER, for example,
if numeric, can take up to 8 bytes of space, but assigning it as a character value
decreasesits sizeto 1 byte. References to all character valuesin a program must be
enclosed in single quotes (e.g., if gender="1").

* Missing values. Numeric missing values are denoted with a period (.) while character
missing values are denoted with a space in quotes (*).

Analyses using SAS software require that the data be in the form of a SAS data set. If the data
arein thisform, no data preparation is needed; the data set can be easily viewed and explored
using a SAS program to create either: @) a permanent or b) atemporary SAS data set. A
permanent SAS data set is normally created if it is known which subsets are being used for
analysis (e.g., if only a bypass procedure is of interest, only the hospital records that actually

15

contain this surgery would be needed). Temporary SAS data sets, on the other hand, last for the
duration of the SAS session, and are useful when developing and debugging programs. Non-SAS
data setsrequire additional preparation because they need to be converted to SAS data sets.

A. PREPARING SASDATA SETS.

To create atemporary SAS data set from another temporary SAS data set requires only the
DATA and SET statements and the one-word name of the data set. To read or to create a
permanent SAS data set requires athird statement - LIBNAME - to tell SAS whereto find the
data set.

* LIBNAME sasref 'c:\sasdir'; tells SAS that the user has chosen sasref as the name to
represent adirectory on c: drive called sasdir. That is, LIBNAME tells SAS where the
permanent SAS data set is located (or to be located).

* DATA two; (to create atemporary SAS data set) OR
DATA sasref.two; (to create a permanent SAS data set).

The DATA statement is required to tell SASto create another, new, SAS data set from
the data set specified in the SET statement following.

» SET one (to read/access atemporary SAS data set) OR
SET sasref.one; (to read/access a permanent SAS data set)

For permanent SAS data sets, the SET statement tells SAS: a) the name assigned to the
directory, or location, of the data set (sasref) and b) the name of the permanent SAS data
set (one). For temporary SAS data sets only the one-word file name need be specified.
(SAS will automatically assign the temporary SAS data set to the WORK library for the
duration of the SAS session, but the temporary data set can be referred to without
specifying thislibrary.) The SET statement thustells SASto read (or access) the data set,
loading the information into memory so that the user can view or manipulate it. Any
changes made to the data set specified in the SET statement will be reflected in the data
set specified in the DATA statement, NOT in the original data (unlessit is being saved
with exactly the same name).

These keywords are illustrated in the accompanying SAS program examples.

It can be possible to create alarge number of temporary SAS data sets in the course of aSAS
session but generally it is desirable to conserve space. If the reason for creating the new data set
isto create more variables, for example, the same data set name can be used (e.g., data one; set
one;). Thiswill simply overwrite the previous data set. Subsetting the data (e.g., keeping only
age 65+) will also conserve space. Assigning anew name in this case (e.g., data age65p; set
one;) will permit the user to access either data set during the SAS session.

Note that two options can be useful when creating permanent SAS data sets; both are placed in

16

the DATA statement; for example: data sasref.new (compress=yes label="Simulated MB Health
data');

* compress - removes the extra space used by non-filled or partially filled variables. This
option can reduce the size of a data set quite substantially, but note that in certain cases,
it can actually increase its size. The log will provide this type of information so that any
necessary adjustments can be made.

» |abel - permits adding a brief description of the data set; this information would then be
seen in output generated by PROC CONTENTS.

Additional information on reducing the space taken up by SAS data setsis available from the
MCHP document titled "Saving Spacein SAS".

B. PREPARING NON-SASDATA SETS

The non-SAS data set, which can be converted to atemporary or permanent SAS data set, can
take one of two forms: I) an ASCII fileor Il) afile generated by another software package.

I. A fileof ASCII (raw) data
This may look something like the following:

12 38 8 011275
22189 000088
31 04100

These numbers cannot be meaningfully manipulated unless the user is given additional
information to tell SAS the variable names, their locations, and whether they should be read in as
numeric or character. The SAS program must use an INPUT statement to provide SAS with this
information, aswell as FILENAME and INFILE statements (the simulated Manitoba Health data
set is an example of thistype of data set):

* A FILENAME statement is necessary to specify which file contains the raw data. The
statement FILENAME rawref 'c:\sasr ef\rawdata’; provides both the location (sasref
directory) and the file containing the raw data (rawdata).

* AnINFILE statement is used to indicate that araw data set should be read in by SAS,
as specified in the FILENAME statement (INFILE is used to read raw data, while SET
isused to read in SAS data). INFILE rawref; tells SAS to read the raw data set, name
and location as described in the FILENAME statement.

* AnINPUT statement is used to provide SAS with variable names, column numbers, and
numeric/character information. For example, INPUT age 14-15 gender $20; indicates
that age is two columns, or spaces, in width, starting at column 14 (this would not
accommodate ages with 3 digits, i.e., ages>99), and that gender is 1 column wide,

17

located at column 20. The dollar sign denotes that gender isto be read in as a character

variable while the absence of adollar sign indicates that age isto be read in as anumeric
variable.

Data values can also be located within a SAS program. In this case, a CARDS keyword is
necessary to signal SAS that raw data values are to be read in within the program. The
Height/Weight and clinical data setsillustrate this approach.

Il A file generated by another softwar e package

While ASCII files and input statements are the most commonly used method for importing data
into SAS, many other programs store information into aformat that SAS can read. These
programs often keep information on variable type, length, and format. SAS can access
information stored in formats saved by other programs in several ways.

1. Using delimitersin a 2-step process
a) Convert theexternal fileto ASCII (text) format.

The externa file from the native program is saved in ASCII format, with a special character
or delimiter between each field (variable). Quote/comma and tab delimited are the most
common types of delimiter. For example, delimited ASCII files can be saved from Excel 2002
by selecting 'Save as' and saving the file with atype of Text (Tab delimited)(* .txt).

b) Import thefileinto SAS.

» If using a SAS program, the delimiting character is defined in the INFILE statement,
eg.

FI LENAME RAWFI LE ' C:\ SASREF\ RAVWDATA
DATA NEW

| NFI LE RAWFI LE DELI M TER=' 09" x
** '09'x stands for the tab
character in hexidecimal fornmat,
the delimter=dsd option can be used

for quote/conma separated files;
| NPUT ONE TV ;

» If using agraphical interface, select Import Data from the SAS File menu and select
User Defined file format: EFI or select one of the pre-defined files under Sandard
data source, i.e., Delimited, Comma Separated Values, or Tab Delimited File.

2. Direct Access Using Engines

A format-specific engine on a LIBNAME statement will permit reading some datafile
formats directly. Generally files must be saved in a general or portable format prior to
importing them into SAS. SPSSis used here as an example but other engines are available.
Prior to importing an SPSSfile it must first be saved as an SPSS Portable format (.por) file

18

from within SPSS (note that the SPSS engine does not work under SAS 6.12 and Solaris
(UNIX)). A SAS program could then be used to read in thefile, for example:

LI BNAME | MPORT SPSS 'c:\tenp\spssfile. por’

** Note: file nust be in SPSS portable formt ;
DATA TEST ;

SET | MPORT. _FI RST_ ;

** first_is the first, and only, data set
inthe library, or directory.
RUN ;

or, PROC CONVERT can be used with the following syntax:

FI LENAME | MPTSP ' c:\tenp\spssfile. por’
PROC CONVERT SPSS=| MPTSP DATA=TEST ;
RUN;

3. Importing datainto SAS

PROC IMPORT may be used to import a data set, or a data table, from avariety of different
sources. In some cases, the specific rows and columns will have to be defined; in other cases
whole tables can be imported. PROC IMPORT can be used to import files created from such
programs as MS Access (ACCESS), DBase (DBF), Lotus (WK1, WK3, WK4), and Excel
(EXCEL, EXCEL4, EXCEL5, EXCEL97, EXCEL 2002). ASCII delimited files can also be

imported as delimited files (DLM, CSV, TAB). The Access component of SAS software must
be installed and available for each file type.

Data can be imported:

* froman MS Access database:

PRCC | MPORT OQUT= tenp

DATATABLE= "Base"

DBMS=ACCESS REPLACE

** DBMS defines the database or file type;
DATABASE=" C: \ dat abase. ndb";

RUN;

« from an Excel database:

PROC | MPORT OQUT= htwt 2
DATAFI LE= "x:\sasdir\ htwt. x| s"
DBMS=EXCEL2002 REPLACE;
GETNAVES=YES;
RUN;

» fromthe SASmenu, i.e., this procedure can be used interactively through the
File/lmport/Standard Data Source option.

19

PROGRAM EXAMPLESFOR DATA PREPARATION

Severa examples are shown here of creating and reading/accessing data sets for: 1) Permanent
SAS data sets, 2) Temporary SAS data sets, and 3) Raw data sets.

1) Permanent SAS Data Sets

LR R R R R I R R I I R I R I O

*Thi s program CREATES a permanent SAS data set *
*it assumes that a tenmporary SAS data set has *
*al ready been created during the SAS session. *
***;
i bname sasref 'c:\sasdir';

/* where to store the new pernmanent SAS data set*/
dat a sasref. new,

/* create a permanent SAS data set in the

sasdir directory */
set htw;

/* access, or read, a tenmporary SAS data set*/
igf;***
*Thi s program READS a permanent SAS data set, *
*creating a tenporary SAS data set. *

LR I I R I O R I I R R I R R R I R R R I O O

i bname sasref 'c:\sasdir';

/* location of permanent SAS data set on C drive */
data one;

/* create a tenmporary SAS data set */
set sasref.survey;

/* read the permanent SAS data set called "survey" */

run;
EIE IR R I I I I I R I I I I I L I I I I I I I I R R L I I I I I I I I I I I I I I I I I I
*The above program al so CREATES a tenporary SAS *
* data set froma permanent SAS data set. *

SRR I I I I R S R R I R I I O R R I S S R I R S O
’

2) Temporary SAS data sets

LR R R R R I R R I R I R I O

*Thi s program READS a tenporary SAS data set, *

*creating another tenporary SAS data set. *
*I't assumes that "one" has already been created *
*during the SAS session. *
***;
data two;

/* create a tenporary SAS data set called "two" */

set one;

/* read the data set called "htw" */

if gender='F;

/* keep only females in the "two" data set */
/* (this assunes the variable "gender" exists in "one")*/
run;

20

3) Raw data sets

LR I S R I R R R O I I

*Thi s program CREATES a permanent SAS data set *
*froma file containing raw data. (To create a *
*tenporary SAS data set, a |libnane is not needed, *
so the |ibname would cone out and the data statement
*woul d be data one instead of data sasref.one). *

LR R R R R R O R R R I R R I R I R R O O

filename rawef 'c:\sasdir\rawdata';
/* nanme and | ocation of raw data file on C. drive */
i bname sasref 'c:\sasdir';
/* location for new permanent SAS data set */
dat a sasref. one;
/* create a permanent SAS data at the sasref |ocation*/
infile rawef;
i nput nane $1-10
sex $12
sal es 20-25;
run;

. VIEW THE DATA: SASPROCEDURES

Four SAS procedures are described here. Two SAS procedures- CONTENTS and PRINT - are
frequently used to take afirst look at the data. Two other procedures - PROC FORMAT and
PROC SORT - can be used with them to enhance the output, the former for labelling or grouping
data values, and the latter to change the order in which the records are sorted. Except for PROC
CONTENTS, all examples assume that atemporary SAS data set has been created from the

height/weight data.
1. PROC CONTENTS

PROC CONTENTS can be used to obtain general information about a SAS data set, including an
alphabetic list of variables and their attributes (e.g. type, length). Details are also provided
regarding the data set itself, such as number of observations and number of variables, and
whether the data set was sorted by any variable(s) or compressed.

khkkkkhhkhkkhkhhkhkkhhhkkhkhhkhkkhhhhkhhhkkhdrxhkdhhkddrxhkdhdxkddrxhkdhxddxkk,xx%x

*Thi s program was used on the sinulated Manitoba *
*Heal th data, both for Version 1 and Version 2 *
(the latter showing the output with | abel s added to
*bot h vari abl es and val ues) *

LR R R R I R I I R R R R R I R R I O
1

proc contents data=test;
run;

21

2. PROC PRINT

PROC PRINT can be used to display the values for any of the variables and for any number of
observations in the SAS data set. Five examples of PROC PRINT, using the height/weight data
set, are shown here, the latter three being illustrated with the use of PROC SORT.

Exampl e 1: PROC PRI NT
EIE I I I I I R I I I I I I I S I S R R S I I R I b I b S S S I S
*This programcreates a listing *
*of all the values and all the variables. *

khkkkhhkkkhkhhkhkkhhkhkkhkhhkhkkhhhxkhkhhhkkhhdxhkdhhkdhrxhkdhhkddkrxhkdkhrkddxkkx*x-
l

proc print data=htwt; /* Begin the PROC step */
/[* Add 2 titles */
titlel 'PROC PRINT: Exanple 1';
title2 'No keywords specified except for TITLE ;
run; /* End the PROC step */

Exanmpl e 2: PROC PRI NT

khkkkkhhkhkkhkhhkhkkhhhkkhkhhkhkhhhhkhhhkkhhrxhkdhhkddhxhkdhkrxddrxrkdhrxddxxk,xx%x

*Thi s program produces output that illustrates *
*the use of a nunber of optional keywords and *
*statenents that can be used with PROC PRI NT. *

khhkhkkhhkhkhhkhkhkdhdrhdkhrdhkdhkrhdkhrhkdhrhdhorkdddrhdhrrkdhrhkdhrrddxkdkxx-
1

/* Display the first 10 records (this requires the data=
option). The LABEL keyword is necessary for the LABEL
statenment bel ow */

proc print data=htwt (obs=10) | abel;

/* Instead of nunbering the records sequentially,
identify them by the values of the name variable */
id name;

/* Only print the data values for two
vari abl es (age and sex) */
var sex age;

/* Add up the values for the weight variable */
sum wei ght ;

/* Add | abels for 4 variables */

| abel name = 'Nane of student’
wei ght = ' Wi ght in pounds’
sex = ' Gender of student'
age = ' Age of student';

/* Instead of displaying sex with values of Mand F
use the format $sexl (previously created) and the
format statenent to | abel themas Mal e and Female */

format sex $sexl.;
/[* Add 2 titles */
titlel 'PROC PRINT: Exanple 2';
title2 '"Use of OBS=, LABEL, |ID, VAR
SUM and FORMAT keywords';

run;

22

3. PROC SORT

PROC SORT is used to sort a data set on specified variables. PROC PRINT is used here to
illustrate the results of different ways of using PROC SORT (PROC SORT by itself does not

produce any output in the Output window). It isimportant to note that sort order sequence (i.e.,
whether numbers or alphabetic characters are sorted first) and how missing values are dealt with

can vary with the operating system. In PC SAS, numeric values are ordered before alphabetic

values.
Exanpl

Exanp

e 3: PROC PRI NT AND PROC SORT

LR I S R I O R T R R R R R I R R R O I I I

*This program sorts the data by name and creates a *
*listing of the values of 3 variables (name being *
placed in the first colum)for the first 10 records.
*The resulting output is displayed *
*in al phabetical order of name. *

*

LR R R R I R I R R I R I I I O R O

proc sort data=htwt;
by nane;
run;

proc print data=htwt (0obs=10);

id nane;

var sex age;

titlel ' PROC PRI NT: Exanple 3';

title2 '"Where the data set is sorted by nane';
run;

e 4: PROC PRI NT AND PROC SORT

LR I S R I R R O I I

This program sorts the data in reverse order of name
*and creates a listing of the values of 3 variables *

*(nanme being placed in the first colum) for the *
*first 10 records. This output is displayed *
*in reverse al phabetical order of nane. *

khkkkkhhkkkhkhhkhkkhhkhkhkhhhkhhkhxkhhhkhkdhdxkhkdhkhkhhkrxhdhrhkkddkxhkdkrxhkddxkdxxk-

proc sort data=htw;
by descendi ng nane;
run;

proc print data=htwt (0obs=10);
id nane;
var sex age;
titlel ' PROC PRI NT: Exanple 3';

title2 "Wiere the data set is sorted by DESCENDI NG nane';

run;

23

Exanpl e 5: PROC PRI NT AND PROC SORT

LR I S R I R R O I I I

Thi s program creates another data set called "other"
*which is sorted by sex and, for each value of sex, *
is sorted by age. The PROC PRINT step is identical
*to Exanple 4 except the newly created data set is *
*specified to produce output instead of

*the "htw" data set. *

EE R I R R S I I O I R R I R R I R R I I R R I
1

proc sort data=htwt out=ot her
by sex age;
run;

proc print data=other (obs=10);

id nane;

var sex age;

titlel ' PROC PRI NT: Exanple 5';

title2 "Were the data set is sorted by sex and age';
run;

4. PROC FORMAT

PROC FORMAT isan extremely useful SAS procedure for creating formats that can be used to
label data values or to group them. The PROC FORMAT statement is usually placed prior to a
DATA step (athough it can be run separately, creating formats that can be used at any time
during the SAS session). Separate VALUE statements are required for each format; multiple
VALUE statements can be specified under one PROC FORMAT statement. A data set is not
specified when using a PROC FORMAT statement. PROC FORMAT does not change,
manipulate or do any calculations on the data. It simply creates formats that the user can usein
PROC or DATA steps after PROC FORMAT has ran.

Format names are assigned by the user; they must be no longer than 32 characters and cannot
end in anumber (In older versions of SAS, format names can only be 8 characterslong). Formats
that will be used with character variables MUST start with "$" (the “$” counts as one of the 32
characters allowed). The format name can also be used to distinguish grouping formats (e.g.,
endingin"F" or "G") from labeling formats (e.g., ending in "L"). Another useful convention isto
repeat the original value in the new label being created (e.g. 'A' = 'AWinnipeg' instead of
'‘A'="Winnipeg'). The output could then display not only the label for the value, but the original
value aswell.

Once PROC FORMAT is submitted, only the log indicates that the program has executed; it
should show the names of the formats that have been created. The log will add an additional note
indicating that the format "is aready on the library” if the format aready exists (e.g., was
previously submitted), and indicating that the previously existing format has been overwritten.
Thisis not a problem unless the user wishes to keep the pre-existing format as well - in that case,

24

the new format should be given a new name before submission (and before SAS overwrites the
pre-existing format).

No output is produced in the Output window when submitting PROC FORMAT. The formats,
however, are now available for use at anytime during the current SAS session, and can be used
for labeling values (using the FORMAT statement) or for creating new variables by grouping
values using the e.g., PUT statement.

LR R R R R R R R R R I R I R I S R

*Thi s program creates several formats. *
*Al'l values on the left side of "=" refer to values *
*that nust already exist in the data set. All *

*values on the right side are created by the user. *
*The keywords LOW HI GH, and OTHER are illustrated. *

khkkkhkhkkkhkhhkhkkhhhkkhkhhkhkhhkhxkhkhhhkdhdxhkdhhkdhhxhkdkhhkdhkrxhkkdkhrxkddxkkx*x-
l

proc format;
/*1.Create format to be used to | abel CHARACTER val ues*/
/* Create $SEXL format (need $ and quotes)*/

val ue $sexl

'M ="M Mal €'
'"F' = "F.Fenmal e';
/*2.Create format to be used to | abel NUVERIC val ues */
val ue sexl
1 ="1. Male'
2 ='2. Femnl e';

/*3.Create format to be used to group CHARACTER val ues */
/* Group values of A and B into value 1*/

val ue $regionf "A','B ="'1
/* Group values Cto Einto value 2 */
'C-'E ='2'
/* Group all other values into value 3 */
O her ='3;
/*4.Create format to be used to group NUMERI C val ues */
val ue agef

/*Note that missing values would be included in
the <30 category. 0-29 could be specified instead
of low29 to exclude the mssing val ues from
t he grouping. */

low29 = "1
30-39 ='2'
40-49 = '3’

50-high ="'4";

run;

25

VIEW THE DATA: PRACTICE EXERCISES

These questions assume that a permanent SAS data set has been created from the sample clinical
data (alink to this datais found on the website under sample data sets). Examples are given for
how program, log, and output might look.

1. Generatealist of variables and their attributes.
2. Generate the following listings of variable values:
» All variablesfor al observationsin the data, displaying their original values.

» Thefirst 5 observations, printing values for the following 3 variables: gender, diastolic
blood pressure, and systolic blood pressure. Display labels for the variable namesin the
output, and add value labels for the gender variable.

* Re-run the same program on all observations, except this time display the datafor the 3
variables sorted by gender. (2 procedures required.) If the original sort order isdesired to
be kept in the clinical data, the user has the option of creating an output data set, sorted by
gender, with a different name.

* Re-run the same program, except this time sort the data by both gender and systolic blood
pressure, and display gender in the first column (rather than having the observation
number showing). (2 procedures required.)

3. Change how output is displayed for the gender variable and display alisting for only this
variable. Instead of displaying Male and Female, have the values read Male adult and
Female adult. (2 procedures required.)

II1. EXPLORE THE DATA

This section describes how to generate some statistics for numeric data and how to use tables to
display either numeric or categorical data.

STATISTICSFOR NUMERIC DATA

Certain SAS procedures can only be performed on numeric data. Two such procedures - PROC
MEANS and PROC UNIVARIATE - areillustrated here using the height/weight SAS data set.
(Note that PROC SUMMARY generates output similar to PROC MEANS))

26

1. PROC MEANS

PROC MEANS: Exanple 1
kkhkhkkhkhkkhkhkkhkhkhkkhhkkhhkkhhkhhkhhkhhkhdhkhkdhhhhkhhkhhkhhkhdhkhdhhhhhhkhhkhhkkhkk*x*%x
*Thi s program creates output (Exanple 1) *
*using the default setting of PROC MEANS. *
R R I R I A kI I I I S R I R I I I I I S I A R I I 2 O A O A)

proc neans data=htwt;/* Begin the PROC step */
/[* Add 2 titles */
titlel ' PROC MEANS: Example 1';
title2 'No keywords specified'
run; /* End the PROC step */

PROCC MEANS: Exanple 2
kkhkhkkhkhkkhkhkkhkhkkhkkhhkkhhkkhhkhhkhhkhhkhkdhhkdhhdhhkhhkhhkhhkhdhkhdhdhhhhkhhkhhkkhkk*x*%x
*This program specifies a series of keywords and *
*optional statenments to create output (Exanple 2) *
usi ng PROC MEANS. The CLASS statenent avoi ds havi ng
*to sort the data first, but the CLASS statenment is *
*nore suited to smaller data sets or when just a few
*CLASS variables are to be used. *
R R S R I I S S I I I I I R S I I R I I I I I S b A I I I O I O A)

/*Some of the keywords avail able with PROC MEANS
N - nunmber of observations
MEAN - nean val ue
M N - mni num val ue
MAX - maxi mum val ue
SUM - total of values
NM SS - nunber of mi ssing val ues
MAXDEC=n - set maxi mum nunber of
deci mal places */
proc neans data=htwt n
nmean mn nmax sum nm ss maxdec=1

/*Apply analysis only to "age" vari abl e*/
var age;

/ *Separate the anal ysis by val ues of sex*/
cl ass sex;

/* Add 3 titles */
titlel ' PROC MEANS: Exanple 2';
title2 'Use of VAR CLASS, and TITLE statenents';
title3 ' CLASSED by gender';
run;

PRCC MEANS: Exanple 3

LR R R R R R R R R I R I O R

*Thi s program generat es out put (Exanple 3) *
*simlar to Exanple 2 but displays the output *
*slightly differently and al so creates another SAS *
*data set. Additional resources are used because *
*the data nust be sorted first. *

* .

LR R R O R R R R I R R R I R I R
1

/* Sort the data first because a BY statenent
is being used in the next PROC step */
/*Sort by sex */
proc sort data=htwt;
by sex;
run;

proc neans data=htwt n
mean mn max sum nni ss naxdec=1;
[*Separate the output by sex*/
var age;
by sex;
/*Create a tenporary SAS data set containing
the informati on generated by PROC MEANS */
out put out =agedat a;
/[* Add 3 titles */
titlel ' PROC MEANS: Exanple 3';
title2 'Use of VAR BY and OUTPUT statenents';
title3 ' SORTED by gender';
run;

/*Di splay val ues of the new data set*/
proc print data=agedat a;
/[* Add a 4th title*/
titled "A print of the OQUTPUT data set';
run;
/*Renove Titles 2-4 fromthe next set of output*/
title2;
title3;
titled;

2. PROC UNIVARIATE

PROC UNIVARIATE provides additional statistics, some of which are not available from PROC
MEANS (e.g. mode).

PRCC UNI VARI ATE: Exanpl e

LR I R I O R R R R R O I I I

*Thi s program uses PROC UNI VARI ATE to create *
*detail ed out put of nuneric statistics *
*(Univariate exanple) on the "age" vari abl e. *

LR R R R I R R I O R O I I I I I I I R R
1

proc univariate data=htwt;

var age; /*Apply analysis only to "age" vari abl e*/
titlel ' PROC UNI VARI ATE exanpl e';
run;

28

EXPLORE NUMERIC DATA: PRACTICE EXERCISES

These questions assume that a permanent SAS data set has been created from the sample clinical
data. Continue to use the same program as used for the other practice exercises. The format file
does not need to be included for this section. Examples are given for how program, log, and
output might look.

1. Generate numeric statistics using the default setting for PROC MEANS.

2. Obtain the mean values for heart rate and systolic and diastolic blood pressure, limiting the
decimal placesto 2, and indicating how many missing values there may be.

3. Re-submit the question, this time obtaining the mean values for the 3 variables for each
gender and for whether or not the patient is pregnant. Save these values to a separate data set,
and display alisting of these values. (3 procedures)

4. Obtain mean, median, and mode values for systolic and diastolic blood pressure.

CREATING TABLESFOR NUMERIC OR CATEGORICAL DATA

The SAS procedure PROC FREQ is commonly used to produce summary data in tabular form.
Five examples are shown here using this procedure on the height/weight data set. It can be used
on either character or numeric data, although a procedure specifically for numeric data (like
PROC MEANS or PROC UNIVARIATE) may be more appropriate for numeric variables
having many different values.

The following is a summary of options and optional statements that can be used with PROC
FREQ. Optional statements can be in any order, while options are entered at the end of the
TABLES statement, following "/" and before ;" Note that this list represents only a portion of
all available to the user from SAS:

» TABLES- optional statement for specifying the variables to be included in the analysis.

* WEIGHT - optional statement for specifying the variables to be summed for each value
of the variables specified in the TABLES statement.

* CHISQ - option to obtain chi-square statistic to test for significant differences.
* ALL - optionto obtain all statistics available with PROC FREQ.
* MISSING - option to include missing valuesin the cal cul ations within the table.

 MISSPRINT - option to display the missing values in the tables without including them
in the calculations.

29

* LIST - option to list values of variables side by side rather than in tabular form.

* OUT=- option to create a data set containing the output generated by the TABLES
statement.

PROC FREQ: Example 1

EE IR I I R I R I S R S R R I S R R I S R O

*Thi s program creates output (Exanple 1) *
*using the default setting of PROC FREQ which *
*produces 1l-way tables of ALL the variables in *
*t he dat a. *

R IR I I R I R S R R I R I I R I R R S R R S O
l

/* Begin the PROC step */
proc freq data=htw;
[* Add 2 titles */
titlel 'PROC FREQ Exanple 1';
title2 'No keywords specified
/* End the PROC step */
run;

PROC FREQ: Example 2

EE IR S I S I I I R I R R I S I I I R S I O R

This programcreates 1l-way tables for two vari abl es
*(Exanmpl e 2). *

khkhkhkkhhkhkhhkhkhkdhdrhdkhrdrkdhrhdkhrhkddhrhkdhodrkdddrhdhrrddrhkdkhrrddxkdxx-

proc freq data=htwt;
/* Produce tables for 2 variables */
t abl es sex age;
titlel ' PROC FREQ Exanple 2';
title2 "1-way tables for variables specified
by TABLES keyword';
run;

PROC FREQ: Example 3

EE R S I I I I I R R I S I S S I R S I I O

*This programcreates a 2-way table (a "cross-tab"), *
*froma subset of the data (Exanple 3) by adding an *
*asterisk between the two variables. The *
*values for the first variable specified appear on *
the left side of the table while the values for the
second vari abl e appear across the top of the table.
A statistic is requested and a new data set is al so
*creat ed. *

khkkkhhkhkkhkhhkhkkhhkhkkhkhhkhkhhhxhkdhhhkdhdxhkhhhkdhdxhkdhhkdhkxhkdkhrxkddxkkx*x-
’

proc freq data=htw;
/* Produce cross-tab with chi-square

statistic and create a new data set

cont ai ni ng the out put generated
t he TABLES st at enent */
tabl es sex * age /chisq out=freqthbl
/*Keep only ages 0 to 29 */
wher e O<=age<=29;
titlel ' PROC FREQ Exanple 3';
title2 '2-way table using the CH SQ
WHERE, and OUT= keywords';
title3 'Subsetting ages 0 to 29
run;

/* Produce a listing of the new data set*/
proc print data=freqthbl
titled "A PRINT of the OUTPUT data set';
run;

PROC FREQ: Example 4

by

LR R R R R R R O R I R R I S

*This programcreates a 2-way table listing the
*val ues of the variables side by side (Exanple 4)
*This is a useful way of checking the val ues

*of existing variables agai nst those of new

*vari abl es to ensure they have been accurately
*creat ed.

khkkkkhhkhkkhkhhkhkkhhhkkhkhhkhkkhhhhkhhhkkhdhhhkdhhkddrhkdhxddkhrxhkdhxrdxx*x*x

proc freq data=htw;

/* Use the LIST keyword to |ist the val ues
side by side, and the M SSI NG keyword to

i ndi cate which variable(s) may have m ssing

val ues*/
tables sex * age /list mssing;
titlel ' PROC FREQ Exanple 4';

*
*
*
*
*
*
* -

title2 '2-way table using LIST and M SSI NG opti ons';

/*Remove previous TITLE3 and Tl TLE4 */
title3;
titled;
run;

PROC FREQ: Example5

khkkkkhkhkkkhkhhkhkkhhhkkhkhhkhkkhhhhkhhhkkhhrxhkhhhkddrxhkdhdxddrxhkdhrxddxkk,xx%x

*This programcreates a 3-way table using three
*vari abl es on a subset of the data (Exanple 5).

*

*

The first variable represents the control variable,
*for which separate output (cross-tabs of the other *

*two variables)is created for each of its val ues.

*

khkkkhhkhkkhkhhkhkkhhhkkhkhhkhkkhhkhxkhkhhkhkkhhhxhkdhhkddrxhkdhhkddkrxhkhkhxkddxkkx*x-

proc freq data=htw;
/* Controlling for "name", produce cross-tabs
of "height" by "weight"*/

31

tabl es name * height * weight;
/*Keep only ages 0 to 27 */
wher e O<=age<28;
titlel 'PROC FREQ Exanple 5';
title2 '3-way table: height by weight,
controlling for nane';
run;

Note: SAS can create tables that cross any amount of variables (i.e., 'n-way table), but
interpretations can get complicated with too many variables.

EXPLORE DATA: PRACTICE EXERCISES

These questions assume that a permanent SAS data set has been created from the sample clinical
data and that the format file has been included (the data and format file can be found on the
website under sample data sets). The default setting for PROC FREQ is would generate alengthy
list of al numeric and character variables; instead the variables for analysis should always be
specified using a TABLES statement (similar to the VAR statement used in the numeric
procedures MEANS and UNIVARIATE). Examples are given for how program, log, and output
might look.

1. Create one-way tables for each of the following variables: gender, pregnant, primary DX and
secondary DX. Add value labels for each of them; the format names are found in the format
filefor the clinical data set. These one-way tables display the distribution of values for each
of the specified variables.

2. Create separate two-way tables (or cross-tabs), i.e., one variable against the other, for each of
the following questions; label the values of each variable using the available formats:

* What proportion of pregnant women were taking vitamins, compared with non-pregnant
women? In this case, only women should be kept for analysis.

» How does primary diagnosis differ by gender? (Suggestion: put gender as the last variable
in the TABLES statement because it has only 2 values. Recall that values for the last
variable are displayed across the width of the table.)

» Create aside-by-side listing to check the values of gender against the values of pregnant.

3. Controlling for gender, how does the distribution of primary diagnosis differ for those taking
vitamins versus those not taking vitamins? This can be answered using a 3-way table.

V. DATA MANIPULATION
BASIC TECHNIQUES

SAS provides for many optional statements and keywords that can be used in SAS programs to

32

facilitate manipulation and display of the data. Statements can often (but not always) be entered
in any order within DATA and PROC steps, while options must usually be placed in a specific
position within a SAS statement. The data= option, for example, can be added to most
procedures to specify the data set on which it should be run, e.g., proc freq data=test;. Unless the
data set is specified (in this case, "test"), SAS will automatically go to the most recently created
data set.

Two broad categories of statements/keywords are described here - those that can be used to: a)
create subgroups of data, and b) customize display of output. A SAS program incorporating the
use of these statements/keywords follows.

A. CREATE SUBGROUPS OF DATA

Analysis and space requirements will often dictate whether to create separate SAS data sets
(temporary or permanent) for analysis or to simply split the output by the desired values of a
variable. If all analysisisto be conducted on individuals age 65+, for example, it might be
desirable to create a separate, permanent SAS data set, removing all records having an age of less
than 65. Not only is the data set being tailored to meet analysis needs, program efficiency is also
enhanced by reducing the amount of time and space being used to carry out SAS runs -
extremely important if computer resources are limited in terms of both physical and memory
space.

Three approaches to creating subgroups of data are described here, specifying 1) datavalues, 2)
variable names, or 3) number of observations to reduce the data set.

1. Specify data values with the WHERE or | F statements to keep a subset of records, or
observations. Although only the observations containing the specified value(s) will be kept,
all other variables associated with these observations will aso be kept.

where age>=65; This can be used within a PROC or DATA step to keep only those
records having an age of 65 or older within aDATA step.

if age>=65; Thiscan only beusedinaDATA step; however, the advantage of using | F
isthat a number of conditions can be specified:

» if age>=65 and gender="F"; This statement tells SASto keep all females who are
65 years of age and older.

o if age>=65or gender="F'; This statement tells SAS to keep all females and all
people (both male and female) who are 65 years of age and older.

|F statements can be used on variables created in the current data step. WHERE statements
can only be applied to variables that pre-exist in the data.

2. Specify variable names using the K EEP keyword/statement (to keep selected variables) or
the DROP keyword/statement (to drop selected variables) to create a subset of variables.

33

data new;,
set test (keep=regionrelos);

run,;

The above is an example of using KEEP as a keyword; it keeps 2 variables from test in the
"new" data set as the data set is being read in (the other variables, however, are till accessible
for other data steps). (Alternatively, the KEEP statement can be placed at the end of the
DATA statement, but thisis less efficient because al variablesin the test data set will be
processed.)

data test2;

set test;

drop drg drgrgn drgw;
run;

The KEEP and DROP keywords can aso be used as a statement. In this case only the DROP
keyword is being used and 3 variables are dropped from the new test2 data set. This statement
is often used when new variables have been created from existing variables, and the existing
variables are no longer necessary for anaysis.

input age 7-9 regionre 51 deathsep 55-58;

When reading in raw data (e.g., the smulated Manitoba Health data), only the variables
necessary to the analysis need to beread in.

Note that the DROP and KEEP keywords only affect variables; they do not affect the number
of observations.

2. Specify number of observations with the (OBS=) option to keep a subset of records.

data test;
set test (obs=10);
run;

This option is very useful when testing/debugging SAS programs or portions of code. It is
easily removed, and the program can be re-submitted to obtain output for all the observations.
The following illustrates how the option can a so be used when reading in raw data.

data test;
infile rawfile (obs=10);

B. CUSTOMIZE DISPLAY OF OUTPUT
Output can be enhanced in a number of ways, only afew of which are presented here:

1) LABEL, 2) FORMAT, 3) TITLE, and 4) FOOTNOTE statements.

1. Change how variableinformation is displayed by using a L ABEL statement.

e.g., label height ='"Height in inches
weight = "Weight in pounds';

This code will attach labels to height and weight so that the labels rather than just the variable
names will be displayed in any output. Labels currently can be up to 256 characters long, and
must be enclosed in single quotes (double quotesiif there is an apostrophe in the label). The
LABEL statement usually goesin the DATA step, near the end, and is very helpful for
explaining what the variables represent, particularly if other userswill be accessing the data.

2. Change how data values are displayed by using the FORMAT statement.
e.g., format gender $genderl. regionre regionh $regionl.;

This FORMAT statement assumes that formats called $gender and $regionl have been
created (using PROC FORMAT). The variable(s) is specified first, and then the format, which
always has a period at the end of it (at least one space between each). The $ denotes a
character format; it can only be used with character variables. The FORMAT statement will
result, for example, in the values of the variables regionre and regionh being displayed as full
region names rather than '1' through '8' although certain SAS procedures may truncate the
formatted values from the maximum allowable 32 characterslong to 8 or 16 charactersin
length).

The FORMAT statement can be used within a PROC or DATA step. If used within aDATA
step, the format is applied in all procedures referencing the data set. 1f used within a PROC
step (generally preferred), the format is only applied for that specific procedure. The original,
underlying values are NOT permanently changed; only how they appear in output is changed.

Note that SAS also hasits own library of formats that are available throughout any SAS
session.

3. Enhance output by adding atitle(s) using the TI TL E statement.

e.g., titlel 'An example of a title’; can be used within a PROC or DATA step, or by itself, to
place atitle on each page of subsequent output. Note that:

» Titlesare enclosed in single quotes; anything within the quotesis not processed by SAS.
Double quotes are used if the title contains any apostrophes.

» Upto 10 titles can be added, using up to 10 TITLE statements. Each additional titleis
numbered, e.g., title2 'An example of a 2nd title';

* TITLE statements are global statements which mean that they are displayed on every
subsequent page of output in a SAS session. They can be either overwritten (by specifying
new TITLE statements) or cleared (by specifying in the program e.g., titlel; to clear a

35

TITLEL statement, title2; to clear a TITLE2 statement, and so on).

4. Enhance output by adding afootnote(s) using the FOOTNOTE statement.

e.g., footnotel 'An example of a footnote'; can be used within a PROC or DATA step, or by
itself, to place afootnote on each page of subsequent output. The above notesfor the TITLE

statement also apply to the FOOTNOTE statement.

khkkkhkhkkkhkhhkhkkhhhkkhhhkhkhhhkhkhhkhkkhhdxhdhkhkdhrxrdhhkddxrkdkhrhkddxrdxxdx*x

*This programcreates two data sets "nen" and "wonmen" *
*and generates 2 versions of tables show ng the *
*di stribution of name separately for nales and for *
*femal es over age 40. It assunes that the data set *
*"htw" has been previously created. It al so assunes *
*that | abels have not yet been created for the *
*vari abl es. *

* .

LR I S R R O R R R R R R R R O I I
1

proc format; /*Create | abel format for sex*/
val ue $sexl 'M =" Mal €'
"F ="' Femal ' ;
run;

/*Create 2 new tenmporary SAS data sets*/
data men women;

/*Read in the "htwt" data set, keeping only
3 of the variables and the first 10 records*/
set htwt (keep=sex nane age obs=10);

/*For the "nen" data set keep only the records
that have a value of "M for sex */
if sex="M then output nen;

/*For the "wonen" data set keep only the records
that have a value of "F" for sex */
/*(Note that records nmissing values for sex
woul d not go into either data set) */
else if sex='"F then output wonen;

/*Create | abels for the variabl es being kept*/

| abel nanme = 'Nane of individual
age = ' Age at admi ssion'
sex = 'Cender of patient';

run;

proc freq data=nen
t abl es nane;
wher e age=40;
format sex $sexl.
titlel 'Exanple re use of basic techniques';
title2 ' The Student Project';

36

BASIC DATA MANIPULATION: PRACTICE EXERCISES

footnotel 'Limting age to 40+
run;
proc freq data=womren;
t abl es nane;
wher e age=40;
format sex $sexl.;
run;

LR R R R R R I R I O R R I R I R O
1

*]l nstead of the 2 PROC steps used above, the *
*same anal ysis could be done as follows using *
*PROC SORT and BY vari abl e processing. *

EE IR I I R I R I I R I R I R I R I R R I I I R I R S O
’

/*Sort the data by sex prior to creating
tables that are split by sex */

proc sort data=htwt;
by sex;
run;

proc freq data=htw;
/* Create a table of distribution of name */
t abl es nane;
/* Do this separately for each value of sex*/
by sex;
/* Do this only for age 40+*/
wher e age=40;
/* Display formatted val ues*/
format sex $sexl. ;
titlel 'Exanple re use of basic techniques';
title2 ' The Student Project';
footnotel 'Limting age to 40+
run;

These questions assume that a permanent SAS data set has been created from the sample clinical

data. Use the same program as used in the above practice exercises. The format file does not
need to be included. Examples are given for how program, |og, and output might look.

1.

* only pregnant females.

Create 3 separate temporary SAS data sets for each of the following and carry out any SAS
procedures that will indicate only the specified data was kept.

» only dataon blood pressure and heart rate data, along with the id number (for the

whole sample).
» only thefirst 15 observations.

Display the distribution of pregnant by vitamins. Re-submit this table after adding the

37

following:
* A new labd for the vitamins variable: Patient on vitamin therapy.
* New labelsfor the values of pregnant: label "1" as 3+ mos.pregnant and "0" asLT
3 mos. pregnant
» A title showing the source of data and afootnote reflecting the type of exercise.

CREATE NEW VARIABLES

New variables can only be created within the context of aDATA step; they will be included in
the new data set specified in the DATA statement. In the following example, the temporary SAS
data set addvar will contain 2 new variables: newvar and newvar2;
dat a addvar ;

set test;

newar =(regi onre="A");

newar 2=(put (age, agefnt.));

run,;

When creating new variables, severa guidelines are important:

* Numericvs. character. It should always be determined whether the existing variables
are character or numeric as thiswill affect how the values will be referenced.

* Naming variables. A recommended practice isto always give new variables new
names. This enables others who may be using the datato feel confident that the origina
names represent the original variables. This convention also provides away of checking
the original variable against newly created ones to ensure their accuracy.

* Repetitive tasks. Thisis not currently afactor in the smulated Manitoba Health data,
but it should be pointed out that alternate approaches are available for accomplishing
repetitive tasksin SAS programming. If the same processing, for example, has to be
done on the same kind of variable (e.g., diagnosis) and there are 16 fields, or variables,
for thisinformation (e.g., DIAGO1 to DIAG16), a DO loop, combined with an ARRAY
statement, is most useful.

Two broad categories of statements for creating new variables areillustrated here: 1) IFFTHEN
statements, and 2) assignment statements. One of the differences between these two categoriesis
where the new variable nameis placed. In IF/THEN statements, the new variable is referred to at
the end of the statements that refer to the existing variable. The new variable nameis followed
by the equal ("=") sign and the value(s) to be assigned for the new variable. In assignment
statements, the new variable is referenced at the beginning of the SAS statement, followed by
the "=" sign, and then the existing variable(s).

Descriptions and programs are provided for each of the two categories, illustrating their use on

38

the height/weight data set. Program 1 compares and contrasts the use of IF/THEN statements
with an assignment statement that uses the PUT function. It also illustrates the use of an
assignment statement to create a dichotomous variable. Program 2 illustrates the use of two other
types of assignment statements, one using arithmetic operators and another using the SAS
function, SUBSTRING.

DATA MANIPULATION - CREATING NEW VARIABLES:
PRACTICE EXERCISES
These questions assume that a permanent SAS data set has been created from the sample clinical

data, including the format file. Use the same program as used in the above practice examples.
Examples are given for how program, log, and output might look.

1. Cdculate anew variable (bpratio) that represents aratio of systolic to dystolic blood
pressure. Round it to the nearest single decimal place. Do afrequency distribution of the new
variable.

2. Assuming that the 2-digit diagnosis for the variable prim_dx can be meaningfully collapsed
to 1-digit diagnosis, create a new variable (prim_sub) that will only contain the 2nd digit.
Check the new variable against the values of the original variable (using PROC FREQ with a
LIST MISSING option).

3. Create anew blood pressure variable (bpnorm) that simply denotes normal/not normal using
a dichotomous assignment statement based on both readings of blood pressure. Consider the
norm for diastolic to be 60 to 90 and for systolic to be 100 to 140; the norm must be present
for both variables. Check the new variable (which will have 1/0 values) against the values of
the two original variables.

4. Createtwo new heart rate variables (rateif and rateput, each of which groups the same values
of heart rate into 3 categories: low (less than 70), moderate (70-85), and high (86 and over).
Use IF/THEN statements to create one variable, and the PUT function to create the other. In
addition to creating the grouping format required for the latter, create alabeling format for
the 3 different groups. Do frequency distributions (labeling the new values) for the 2
variables - they should be identical; however, the differing distributions illustrate the
importance of identifying missing values prior to creating new variables and determining
how to deal with them.

39

V. ADDING VARIABLES AND OBSERVATIONSTO
DATA SETS

|. ADDING VARIABLESUSING THE SET STATEMENT

a) Concatenating Data Sets

The SET statement when used with one data set can allow you to read or modify the data. If the
SET statement is used with two or more data sets it can not only allow you to read and modify
the data but also it can concatenate or stack the data sets on top of each other. The SAS system
will read all observations from the first data set then the second and so on until all observations
areread. Thisprocessis useful when you want to combine data sets that have most or all of the
same variables with different observations.

The number of observationsin the new data set will be the sum of all the observations from the
original data sets. The order of the observations is based on the order of the list of the original
data sets. If any of the data sets has a variable that is not contained within another data set, the
observations from that data set will have missing values for that particular variable.

Thi s program assunes that the data set htw has already been created

/*Create tenporary data sets*/
data nal e_htw;
set course. male_htw;
run;

data femal e _htwt;
set course.femal e_htwt;
run;

/*Add observations by creating a new data set*/
data concat;

/*concatenate the data sets using a SET statement*/

/*create variables that indicate whether the data set set contributed
data to the current observation, using in=*/
set male_htwt (in=nl)

femal e_htwt (in=nR);

/*Make the indicators pernmanent vari abl es*/
i nmal e=nl;
i nf emal e=ng;
run;

PROC PRI NT dat a=concat ;

title 'Data=Mal e and Dat a=Fenal e Concat enat ed' ;
run;

40

b) Interleaving Data Sets

If you have data sets that are sorted by some variable, smply concatenating the data sets as
shown previously, may unsort the data sets. If you want to concatenate observations from two or
more data sets in a particular order, it ismore efficient to useaBY statement with the SET
statement outlined above. This processis called interleaving data sets.

Before you can interleave the data sets you must sort the data sets by the interleaving variable
using PROC SORT. Like concatenated data sets, the number of observationsin the new data set
isequal to the sum of observations from the original data sets. If a data set does not have a
variable contained within the other data sets, the observations will be set to missing.

*Thi s program assunes that the data sets htw, male_htwt, and fenal e_htw
have al ready been created*

/*Sort the nale and femal e data sets BY age*/
PROC SORT dat a=nal e_htwt ;
by age;
run;

PROC SORT dat a=fenal e_htwt;
by age;
run;

/*Create a new data set interleaving the male and fenal e data
sets by age*/
data interl eave;
set mal e_htw
femal e_htw;
by age;
run;

PROC PRI NT dat a=i nterl eave;
title "Interleaving Mal e and Fenal e Data Sets by Age';
run;

1. ADDING VARIABLESUSING THE MERGE STATEMENT

To match observations from one data set to another, you can use the MERGE statement in the
DATA step. If you know that the two or more data sets are in exactly the same order then you
do not need a common variable between the data sets (mismatched merge). However, data sets
are usually merged together using a merge key (match merge). In thistutorial we will only look
at match merges. A merge key isavariable that is common to both data sets (i.e. a variable that
has the same name and length in both data sets). Before you can merge the data sets, they both
must be sorted by the merge key using PROC SORT.

There are two types of merges. a) One-to-one merges and; b) One-to-many merges.

41

a) One-to-One Merge: Combines observations from two or more data sets into asingle
observation in anew SAS data set.

If you merge two or more data sets and they both have variables with the same names other than
the merge key, the variables in the second data set will overwrite the variables with the same
namein thefirst data set.

Thi s exanpl e assunes that the data set htwt has al ready been created

/*Create a tenporary SAS data set*/
data htwt _reg;
set course. htw;
run;

/*Sort the data sets by the nmerge key*/
PRCC SORT dat a=ht wt ;
by nane;
run;

PROC SORT dat a=htwt _reg;
by firstnane;

run;
data nmer;
nmerge htwt (in=ntl)
/*Merge keys fromboth data sets nmust have the same nane, renane
the nerge key in the htw_reg data set*/
htwt _reg (in=n2 renane=(firstnane=nane));
by nane;
/*Create variables that indicate which data set contributed the
observati ons*/
i none=ml;
i nt wo=n?;
run;

PROC PRI NT dat a=mer;
title "Merged Data Set';

run;

42

b) One-to-Many Merge: Refers to the case where one data set has one observation for each
value of the merge key and the other data set has more than one observation for each value of the
merge key.

Thi s exanpl e assunes the data set htwt has al ready been created

/*Create a data set with one observation per value of sex*/
PROC MEANS dat a=cour se. ht wt ;
cl ass sex;
var age;
/*Create a tenporary data set called mage*/
out put out =nage nean=nean_age;
run;

PROC SORT dat a=cour se. htw out =ht wt ;
by sex;
run;

PROC SORT dat a=nage;
by sex;
run;

data mer;
nmerge htwt (in=ntl)
/*Create variables that indicate what data set contributed their
observations. 1In the data set mage keep only the vari abl es
sex and nean_age*/
mage (i n=n2 keep=sex nean_age);
by sex;

run;

Caution: It isimportant toremember touseaBY statement in the merge. By default, SAS
will not report an error and you may end up with a mismatched merge instead of the
matched merge that wasintended.

ADDING VARIABLES AND OBSERVATIONSTO DATA SETS—-
PRACTICE EXERCISES
These questions assume that a permanent SAS data set has been created from the sample clinical

data, including the format file. Use the same program as used in the above practice examples.
Examples are given for how program, log, and output might look.

43

1. Create two data sets containing:
* Only Maes
* Femalesthat are not pregnant

Concatenate the data sets and interleave the data sets by date of birth.

2. Create two new data sets keeping only the following variables:
* id, gender, date of birth, primary DX, secondary DX
* gender and heart rate

Merge the data sets together to add the ‘heart rate’ variable. Limit the data set to those who have
aheart rate over 70.

3. Create adata set with one observation per value of gender using PROC MEANS. Usethe
variable ‘heart rate’. Find the proportion of observations with heart rate greater than the mean
heart rate.

VI. DATA PROCESSING

|. ARRAY STATEMENT
Purpose

Arrays are often used in conjunction with DO loops when performing actions for a
series of variables. The following example illustrates the same action being

performed on two separate diagnostic field variables. The study diagnosis of 820.0

can occur in either of these fields, and the statements are identical except for the

name of the diagnostic field. The intent of the following statementsisto flag all
occurrences of the study diagnosis by creating a new variable - "HIPFRAC" - where’ 1’
indicates the presence of the desired diagnosis.

If 82000’ <=DX01<="82009' then HIPFRAC="1;
If 82000’ <=DX02<="82009' then HIPFRAC="1;

Sixteen diagnostic fields (DX01-DX16), however, would require 16 lines of code.

Array processing can make the program more efficient by streamlining the code
required to accomplish the task (depending on the situation, if-then/el se statements
can be faster; however, they are also more error-prone). A specified series of variables
is associated with a collective name of your choice; for example, the diagnostic fields
DXO01 through DX 16 could be associated with the name "DIAG", which will then
operate similarly to variables in data step manipulations.

ntax
Arrays are set up using an ARRAY statement. It can appear anywhere in the DATA
step aslong asit occurs prior to any referenceto it. The variables that make up the
array are called elements. Individual elements are identified by subscripts (numbers
that identifies an element’ s position in the array).

ARRAY array-name{number of variables} variable-1, variable-2,...variable-n;

Array-name is a name you choose to represent the group of variables (must be 32 characters or
fewer beginning with aletter or underscore).

Number-of-variables tells SAS how many variables are being grouped; it is represented by
subscripts that are enclosed in brackets.

Variable-1, variable-2,...variable-n lists the names of the variables (the variable list does not have
to beginat 1 - e.g., DX5-DX16)

Example

ARRAY diag{ 16} $ dx01-dx16;
This statement tells SAS to:
a) create agroup or array name DIAG for the duration of the DATA step.
b) have DIAG represent 16 variables: diagnostic fields DXO01 through DX16.
Note that DX01-DX16 are character variables and thus must be preceded by a"$".
Y ou can refer to the entire array or just one of its elements when performing logical
comparisons or arithmetic calculations. All variableslisted in the ARRAY statement
are assigned extra names with the form array-name{ position} , where position is the
position of the variable in thelist (1,2,3,...,16 in the example). The additional nameis

called an array reference and the position is often called the subscript.

45

In the above ARRAY statement, DXO01 is assigned the array reference DIAG{ 1} ; DX02
the array reference DIAG{ 2} ; etc. From that point in the data step, you can refer to

the variable by either its original name or by its array reference; for example, the

names DXO01 and DIAG{ 1} are equivalent.

Caution

An array issimply a convenient way of temporarily identifying a group of variables; it
exists only for the duration of the DATA step. Arraysare not variables.

I1.DO LOOP

Purpose

The iterative DO statement is used to repeatedly execute a set of statements
occurring between the DO statement and the END statement (the DO loop). It is
often used in conjunction with ARRAY statements so that the repeated actions occur
within the loop for each of a specified series of variables.

Syntax

A DO loop begins with an iterative DO statement, followed by other SAS
statement(s), and completed with an END statement. This loop iterates (is processed
repeatedly) according to the directions in the DO statement. Itsbasic formis:

DO <index-variable=1> TO <upper bound of array>;
[or DO <index-variable=1> TO <upper bound of array> UNTIL
<gpecified condition>]
[or DO <index-variable=1> TO <upper bound of array> WHILE
<gpecified condition>]
<SAS statements>
END;

Index-variable is a name you choose (e.g., "I"). Its value changes with each iteration

of the loop, or each time the loop is processed. By default, the value of the index variable

() isincreased by 1 before each new iteration of the loop, consecutively

representing the values 1 to n (number of variablesin array). DO loops can iterate by 2 or by ‘n’
with aBY statement (i.e., do i=1to 10 by 2;).

Number-of-variables-in-array: If used in conjunction with an array, the loop will
execute as many times as there are variables in the array. If there are 16 variables,

46

the loop will execute the statements on each of the 16 variables (i.e.,, DO I=1to 16).
The processing stops when the value of the index variable becomes greater than
number-of-variables-in-array.

Example

The SAS statementsin an iterative DO loop often contain references to an array. In

the following example, the array name is "diag" and the number of variables
represented in its subscript are 16. With each iteration of the loop, the value of the
subscript is replaced with the current value of the index variable ("i"). Successive
iterations of the loop process the statements on consecutive variables in the array.

The intent of this exampleisto search al 16 diagnostic fields to flag any occurrence of
ahip diagnosis of ICD-9-CM 820.

ARRAY di ag{16} $ dx01 - dx16; Q)
hi pdi ag=0; 2
DOi=1to 16; 3
I F ' 820 ' <=diag{i}<=' 82099 THEN hi pdi ag="1"; 4
END; (5)

RUN;

(1) Create an array called "diag" to represent the group of diagnostic fields dx01-dx16
for the duration of the data step.

(2) Create anew variable named "hipdiag" and set it equal to zero. It will remain at
0 if none of the 16 diagnostic fields for that record have a hip diagnosis present.

3) Perform the actions in the loop sixteen times for each record in the data set.

When thevalueof "i" is1, SASreadsthe array reference as DIAG{ 1} and processes
the statements on DIAG{ 1}, that is, DXO01. In each iteration of the loop, the

subscript associated with DIAG is replaced with the index variable’s (i) current value.

(4) When a diagnosis within the specified range is encountered, the variable
"hipdiag" will be assigned avalueof '1'.

(5) All iterative DO loops must end with an END statement.

Example: Output

OBS DX01 DX02 DX03 DX04 DX05 DX06 DXO7 DX08...DX16 H PDI AG
1 650 V270 0
2 71783 0

a7

3 4549

4 V664 82021 E8809 4538 3569 36250 7213 2859
5 V301 7746

6 8208 E888 4019 3310

7 4111 4140 4280 4011 42731 586 5990 V668

8 486

9 V72

10 650 V270

OCO0O0O0ORORO

Observation 4 has hipdiag set to’ 1’ because DX02 has avalue of 82021’ thus falling
within the ICD-9-CM range 820-820.99. Observation 6 similarly has hipdiag setto’ 1’
because DX01 has avalue of '8208 °.

[11. BY-GROUP PROCESSING (FIRST./LAST.)

Purpose

By-group processing refersto the use of aBY statement in aDATA step, which
permits identification of the first- and last-occurring record for each of the specified
BY variables. Two dichotomous (1/0) variables are automatically created for each
variable specified in the BY statement when using SET, MERGE, or UPDATE:
FIRST.varname and LA ST .varname, where varname is the name of the BY
variable(s). By creating these variables, a number of various calculations are
possible, such as obtaining a count of records for each unique identifier.

Syntax

BY varnamel varname2...;

For thefirst record inaBY group, the value of the FIRST .varnamel is set to 1, with

all other recordsinthe BY group set to 0. For the last record inaBY group, the value

of the LAST.varnamel is set to 1, with all other records set to O. If the data are

sorted by more than one BY variable, the FIRST.varname for each variableisset to 1

at the first occurrence of anew value for the variable. FIRST. and LAST. variables

are temporary variables that are only available for the current data step. Y ou can create
permanent variables equal to the temporary FIRST. and LAST. variables (i.e.,
firstvar=FIRST.var;). These permanent variableswill be available in subsequent PROC and
DATA steps.

Example: Single BY Variable

PROC SORT DATA=hosp;
BY phi n;

RUN;

DATA dup;
SET hosp;
BY phi n; Q)
firstfl=FlRST. phin; 2
| ast f | =LAST. phi n; 3
RUN;

(1) Set the data by PHIN (already previously sorted by this variable) in order to
create FIRST.PHIN and LAST.PHIN.

(2) Create anew variable called FIRSTFL and assign it avalue of 1 for every
FIRST.PHIN=1 encountered.

(3) Create anew variable called LASTFL and assign it avalue of 1 for every
LAST.PHIN=1 encountered.

Example: Output

OBS PHI N FI RSTFL LASTFL

1 562737 1 1
2 563850 1 1
3 563961 1 1
4 565858 1 1
5 566739 1 1
6 568729 1 0
7 568729 0 0
8 568729 0 1
9 569961 1 1
10 660861 1 1

In the above example, the person with PHIN 568729 has 3 records (observations 6-8).

For thefirst record (#6), FIRSTFL isset to 1, indicating that it is the first record for

that person and all other records for that PHIN show FIRSTFL values set to 0. For the third and
last record, LASTFL isset to 1, indicating that it is the last record for that person and al other
records show LASTFL values set to 0.

Caution

When conducting BY -group processing, DO NOT do any data exclusions; data
manipulation is ok. Data exclusions can be done in a subsequent data step. Data exclusions
conducted during a data step with FIRST. and LAST. processing can cause unexpected results by

49

eliminating the FIRST. and LAST. records for each BY -group. The only time data exclusions
can be done with BY -group processing is with a subsetting WHERE statement, which is applied
to the data set coming in, before any BY -group processing is carried out.

IV.RETAIN STATEMENT

Purpose

We can often do data cal cul ations/manipulations within observations, but sometimesit is
necessary to do calcul ations across observations. The RETAIN statement is used to keep a
specified value (assigned by an INPUT or assignment statement) from the current iteration of the
DATA step to the next. Otherwise, SAS automatically sets such values to missing before each
iteration of the DATA step. The RETAIN statement allows values to be kept across
observations; for example, computing a running total of values, counting the number of
occurrences of avariable' svalue, setting indicators within aBY-group, and so on. RETAIN
statements are often used with FIRST. and LAST. processing.

Syntax

The RETAIN statement can be used to specify initial valuesfor variable(s) or
elements of an array. All elements or variables will be initialized to the specified
value.

RETAIN <varlist> [initial-value(s)];

Varlist: specifies the names of the variables, lists or arrays whose values you wish to
retain.

Initial-value(s): the initial value(s) can be numeric or character (e.g.,’y’) and is
assigned to all listed variables. If theinitia valueis not specified, it is set to missing.

The following shows four variables specified in each retain statement.

RETAIN varl-var4 1; setsinitia values of varl, var2, var3, var4 to 1.
RETAIN varl-var4 (1); only varlisset to 1; var2-4 are set to missing.
RETAIN varl-var4 (1234); OR

RETAIN varl-var4 (1,2,3,4); varlissetto 1, var2 to 2, var3 to 3, var4 to 4.

For example, the statement RETAIN pop 1; within aDATA step will assign avalue
of 1 to each observation for the variable POP.

/*Use the retain statenent to count the number of observations

50

in each BY group. An index weight is identified and each
subsequent weight is conmpared to the index*/

PROC SORT dat a=htwt _| ong;
by nane age;
run;

data w_conpare (keep=nane age index_wei ght wei ght over count |ast_nane);
set htwt_I| ong;
by nane;
retain count index_weight;
if first.name then do;
count =0;
/*Set and retain the first weight*/
i ndex_wei ght =wei ght ;
end;
/*Counter for nunber of records for each*/
count =count +1;
/*Indicator variable for increased wei ght*/
over = (index_weight < weight);
| ast _nane=| ast. nane;
run;

PROC PRI NT dat a=w_conpar e
title 'Retain Statement';

run;

DATA PROCESSING — PRACTICE EXERCISES

The following two questions assume that a permanent SAS data set has been created from the
sample clinical data, including the format file. Use the same program as used in the above
practice examples. Examples are given for how program, log, and output might look.

1. Create aBY -group by primary DX.
2. Count the number of observationsin each BY -group using the RETAIN statement.

The following questions assume that a permanent SAS data set has been created from the
simulated Manitoba health data available at MCHP. Examples are given for how program, log
and output might look.

1. Usethe ARRAY statement to find all records with a diabetes diagnosis (code 250). Hint: the
SUBSTR function is useful here.

51

