Concept: Random Effects Models - Continuous Data

Concept Description

Last Updated: 2009-08-25

Introduction

A. Longitudinal Designs

B. Clustered Designs

C. Why Use Random Effects Models

D. Advantages of Random Effects Models for Longitudinal Data Analysis

E. Statistical Model for Longitudinal Data

F. Steps in Conducting a Random Effects Analysis

G. An Important Note: Coding Time in the Model

H. Selecting a Correlation Structure

I. Structure for Longitudinal Data

J. SAS CODE

PROC MIXED DATA=data-set-name METHOD=method-of-estimation covtest;
    CLASS id;
    MODEL dependent-variable = time-variable / solution;
    REPEATED / TYPE=correlation-structure SUBJECT=id r rcorr;
RUN;

K. Reducing Computing Time for PROC MIXED

1. Finding and Setting Initial Values

2. Using Explicit Nesting

3. Using the DDFM=BW option

4. SAS Code for all suggestions together (Random Intercept Model):

Related concepts 

Related terms 

References 

Keywords